16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanics of Biological Tissues and Biomaterials: Current Trends

      editorial
      Materials
      MDPI
      mechanical behavior, biological tissues, biomaterials, measurement techniques, constitutive modeling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Bone tissue regeneration: the role of scaffold geometry.

          The geometry of porous scaffolds that are used for bone tissue engineering and/or bone substitution has recently been shown to significantly influence the cellular response and the rate of bone tissue regeneration. Most importantly, it has been shown that the rate of tissue generation increases with curvature and is much larger on concave surfaces as compared to convex and planar surfaces. In this work, recent discoveries concerning the effects of geometrical features of porous scaffolds such as surface curvature, pore shape, and pore size on the cellular response and bone tissue regeneration process are reviewed. In addition to reviewing the recent experimental observations, we discuss the mechanisms through which geometry affects the bone tissue regeneration process. Of particular interest are the theoretical models that have been developed to explain the role of geometry in the bone tissue regeneration process. We then follow with a section on the implications of the observed phenomena for geometrical design of porous scaffolds including the application of predictive computational models in geometrical design of porous scaffolds. Moreover, some geometrical concepts in the design of porous scaffolds such as minimal surfaces and porous structures with geometrical gradients that have not been explored before are suggested for future studies. We especially focus on the porous scaffolds manufactured using additive manufacturing techniques where the geometry of the porous scaffolds could be precisely controlled. The paper concludes with a general discussion of the current state-of-the-art and recommendations for future research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy.

            The pathological changes in osteoarthritis--a degenerative joint disease prevalent among older people--start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scaffold design and manufacturing: from concept to clinic.

              Since Robert Langer and colleagues pioneered the concept of reconstructing tissue using cells transplanted on synthetic polymer matrices in the early 1990s, research in the field of tissue engineering and regenerative medicine has exploded. This is especially true in the development of new materials and structures that serve as scaffolds for tissue reconstruction. The basic tenet of the last two decades holds scaffolds as degradable materials providing temporary function while enhancing tissue regeneration through the delivery of biologics. Although a number of new scaffolding materials and structures have been developed in research laboratories, the application of such materials practice even has been extremely limited. This paper argues that better integration of all these factors is needed to bring scaffolds from "concept to clinic". It reviews current work in all these areas and suggests where future work and funding is needed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                21 July 2015
                July 2015
                : 8
                : 7
                : 4505-4511
                Affiliations
                Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628CD, The Netherlands; E-Mail: a.a.zadpoor@ 123456tudelft.nl ; Tel.: +31-15-278-1021; Fax: +31-15-278-4717
                Article
                materials-08-04505
                10.3390/ma8074505
                5455625
                a989486f-f29a-498f-8fc2-68b10e25a785
                © 2015 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 July 2015
                : 17 July 2015
                Categories
                Editorial

                mechanical behavior,biological tissues,biomaterials,measurement techniques,constitutive modeling

                Comments

                Comment on this article