72
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Filarial Infection Provides Protection against Bacterial Sepsis by Functionally Reprogramming Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control.

          Author Summary

          As the human immune system evolved in the presence of helminth infections, it is postulated that improved hygiene and subsequent loss of helminth infections and their immunomodulatory functions contributed to the sharp increase of autoimmune diseases and allergies over the last decades. Accordingly, helminth-induced anti-inflammatory, regulatory immune responses ameliorate allergy and autoimmune diseases and are likely to impact other immunological disorders including sepsis. Sepsis is an exacerbated, systemic inflammatory disease that occurs when pathogens cannot be locally confined and spread via the blood stream. Thus, efficient sepsis therapies should reduce excessive inflammation without impairing protective immune responses. In the present study we demonstrate that chronic filarial infection modulates macrophages to a less pro-inflammatory phenotype with improved phagocytic capacity. This immunomodulation reduces sepsis-induced inflammation and hypothermia and clears bacteria more efficiently thus improving sepsis survival. Moreover, we found that Wolbachia, the endosymbiotic bacteria of filariae, play a crucial role in triggering the correct macrophage response via TLR2. Thus, our observations suggest that helminths and helminth-derived antigens may not only present new treatment options for allergies and autoimmune diseases, but may also allow treatment of sepsis caused inflammation without impairing bacterial control.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Trichuris suis therapy in Crohn's disease.

          Crohn's disease is common in highly industrialised Western countries where helminths are rare and uncommon in less developed areas of the world where most people carry worms. Helminths diminish immune responsiveness in naturally colonised humans and reduce inflammation in experimental colitis. Thus exposure to helminths may help prevent or even ameliorate Crohn's disease. The aim of the study was to determine the safety and possible efficacy of the intestinal helminth Trichuris suis in the treatment of patients with active Crohn's disease. Twenty nine patients with active Crohn's disease, defined by a Crohn's disease activity index (CDAI) > or =220 were enrolled in this open label study. All patients ingested 2500 live T suis ova every three weeks for 24 weeks, and disease activity was monitored by CDAI. Remission was defined as a decrease in CDAI to less than 150 while a response was defined as a decrease in CDAI of greater than 100. At week 24, 23 patients (79.3%) responded (decrease in CDAI >100 points or CDAI <150) and 21/29 (72.4%) remitted (CDAI <150). Mean CDAI of responders decreased 177.1 points below baseline. Analysis at week 12 yielded similar results. There were no adverse events. This new therapy may offer a unique, safe, and efficacious alternative for Crohn's disease management. These findings also support the premise that natural exposure to helminths such as T suis affords protection from immunological diseases like Crohn's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of allergic airway inflammation by helminth-induced regulatory T cells

            Allergic diseases mediated by T helper type (Th) 2 cell immune responses are rising dramatically in most developed countries. Exaggerated Th2 cell reactivity could result, for example, from diminished exposure to Th1 cell–inducing microbial infections. Epidemiological studies, however, indicate that Th2 cell–stimulating helminth parasites may also counteract allergies, possibly by generating regulatory T cells which suppress both Th1 and Th2 arms of immunity. We therefore tested the ability of the Th2 cell–inducing gastrointestinal nematode Heligmosomoides polygyrus to influence experimentally induced airway allergy to ovalbumin and the house dust mite allergen Der p 1. Inflammatory cell infiltrates in the lung were suppressed in infected mice compared with uninfected controls. Suppression was reversed in mice treated with antibodies to CD25. Most notably, suppression was transferable with mesenteric lymph node cells (MLNC) from infected animals to uninfected sensitized mice, demonstrating that the effector phase was targeted. MLNC from infected animals contained elevated numbers of CD4 + CD25 + Foxp3 + T cells, higher TGF-β expression, and produced strong interleukin (IL)-10 responses to parasite antigen. However, MLNC from IL-10–deficient animals transferred suppression to sensitized hosts, indicating that IL-10 is not the primary modulator of the allergic response. Suppression was associated with CD4 + T cells from MLNC, with the CD4 + CD25 + marker defining the most active population. These data support the contention that helminth infections elicit a regulatory T cell population able to down-regulate allergen induced lung pathology in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wolbachia bacterial endosymbionts of filarial nematodes.

              Filarial nematodes are important helminth parasites of the tropics and a leading cause of global disability. They include species responsible for onchocerciasis, lymphatic filariasis and dirofilariasis. A unique feature of these nematodes is their dependency upon a symbiotic intracellular bacterium, Wolbachia, which is essential for normal development and fertility. Advances in our understanding of the symbiosis of Wolbachia bacteria with filarial nematodes have made rapid progress in recent years. Here we summarise our current understanding of the evolution of the symbiotic association together with insights into the functional basis of the interaction derived from genomic analysis. Also we discuss the contribution of Wolbachia to inflammatory-mediated pathogenesis and adverse reactions to anti-filarial drugs and describe the outcome of recent field trials using antibiotics as a promising new tool for the treatment of filarial infection and disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                January 2015
                22 January 2015
                : 11
                : 1
                : e1004616
                Affiliations
                [1 ]Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
                [2 ]Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
                University of Medicine & Dentistry New Jersey, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FG SS AH MPH. Performed the experiments: FG AB BCB JA DB DS AN MPH. Analyzed the data: FG MPH. Contributed reagents/materials/analysis tools: SS. Wrote the paper: FG LEL AH MPH.

                Article
                PPATHOGENS-D-14-01281
                10.1371/journal.ppat.1004616
                4303312
                25611587
                a9a570f0-5ef7-4d95-b57a-bbab7e1a5c2a
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 2 June 2014
                : 9 December 2014
                Page count
                Figures: 9, Tables: 0, Pages: 27
                Funding
                This work was funded by the German Research Foundation (HU 2144/1–1); intramural funding by the University Hospital of Bonn (BONFOR, 2010–1–16 and 2011–1–10); and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013 under Research Executive Agency Grant GA 276704. AB was supported by the German Academic Exchange Service (DAAD) and BCB was supported by the Jürgen Manchot Stiftung, Düsseldorf. AH is a member of the German Centre for Infection Research (DZIF), and of the Excellence Cluster Immunosensation (DFG, EXC 1023).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article