10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology and Health Impacts of Neuroendocrine Tumors

      Submit here before August 30, 2024

      About Neuroendocrinology: 3.2 Impact Factor I 8.3 CiteScore I 1.009 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Evidence for a GABAergic System in Rodent and Human Testis: Local GABA Production and GABA Receptors

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA<sub>A</sub>, GABA<sub>B</sub> and GABA<sub>C</sub> receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA<sub>A</sub> receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA<sub>A</sub> receptor subunits (α1–3, β1–3, γ1–3), as well as GABA<sub>B</sub> receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA<sub>A</sub> receptor subunits β2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA<sub>A</sub> receptor subunits β2/3 and α1. The presence of GABA<sub>A</sub> receptor subunit α1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels.

          The endocrine part of the pancreas plays a central role in blood-glucose regulation. It is well established that an elevation of glucose concentration reduces secretion of the hyperglycaemia-associated hormone glucagon from pancreatic alpha 2 cells. The mechanisms involved, however, remain unknown. Electrophysiological studies have demonstrated that alpha 2 cells generate Ca2+-dependent action potentials. The frequency of these action potentials, which increases under conditions that stimulate glucagon release, is not affected by glucose or insulin. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is present in the endocrine part of the pancreas at concentrations comparable to those encountered in the central nervous system, and co-localizes with insulin in pancreatic beta cells. We now describe a mechanism whereby GABA, co-secreted with insulin from beta cells, may mediate part of the inhibitory action of glucose on glucagon secretion by activating GABAA-receptor Cl- channels in alpha 2 cells. These observations provide a model for feedback regulation of glucagon release, which may be of significance for the understanding of the hypersecretion of glucagon frequently associated with diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurotransmitters as early signals for central nervous system development.

            During brain ontogenesis, the temporal and spatial generation of the different types of neuronal and glial cells from precursors occurs as a sequence of successive progenitor stages whose proliferation, survival and cell-fate choice are controlled by environmental and cellular regulatory molecules. Neurotransmitters belong to the chemical microenvironment of neural cells, even at the earliest stages of brain development. It is now established that specific neurotransmitter receptors are present on progenitor cells of the developing central nervous system and could play, during neural development, a role that has remained unsuspected until recently. The present review focuses on the occurrence of neurotransmitters and their corresponding ligand-gated ion channel receptors in immature cells, including neural stem cells of specific embryonic and neonatal brain regions. We summarize in vitro and in vivo data arguing that neurotransmitters could regulate morphogenetic events such as proliferation, growth, migration, differentiation and survival of neural precursor cells. The understanding of neurotransmitter function during early neural maturation could lead to the development of pharmacological tools aimed at improving adult brain repair strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit?

              Although neurotransmitters are present in pancreatic islets of Langerhans and can be shown to alter hormone secretion, their precise physiological roles in islet function and their cellular mechanisms of action are unclear. Recent research has identified specific neurotransmitter receptor isoforms in islets that may be important physiologically, because selective receptor agonists activate islet ion channels, modify intracellular [Ca2+], and affect secretion. This article focuses on the putative roles of acetylcholine, glutamate, and GABA in islet function. It has been hypothesized that acetylcholine potentiates insulin secretion by either promoting Ca release from cellular stores, activating a store depletion-activated channel, or activating a novel Na channel. GABA and glutamate, in contrast, have been proposed to mediate a novel paracrine signaling pathway whereby alpha- and beta-cells communicate within the islet. The evidence supporting these hypotheses will be critically evaluated.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2003
                June 2003
                13 June 2003
                : 77
                : 5
                : 314-323
                Affiliations
                aAnatomisches Institut der Universität München, München, Deutschland; bKlinik und Poliklinik für Dermatologie und Allergologie der Technischen Universität München, München, Deutschland; cInstituto de Biología y Medicina Experimental, Facultad de Ciencias Exactas, UNLP, Buenos Aires, Argentina
                Article
                70897 Neuroendocrinology 2003;77:314–323
                10.1159/000070897
                12806177
                aaa7af0d-f98a-4013-9b01-fea3599bc2e7
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 September 2002
                : 23 January 2003
                Page count
                Figures: 5, Tables: 2, References: 64, Pages: 10
                Categories
                Regulation of Reproductive Hormones

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Gamma-aminobutyric acid receptors,Testis,Vesicular GABA transporter,Leydig cell,Glutamate decarboxylase,Gamma-aminobutyric acid

                Comments

                Comment on this article