11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Medication-related osteonecrosis of the jaw. Introduction of a new modified experimental model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT PURPOSE : To evaluate a modified experimental model for medication-related osteonecrosis of the jaw (MRONJ) through the upper right central incisor extraction followed by intravenous bisphosphonate administration. METHODS: Forty five rats underwent the upper right central incisor tooth extraction were divided in 2 groups: Group I - experimental group, 30 rats received an intravenous administration protocol of zoledronic acid 35μg/kg into the tail vein every two weeks, totalizing four administrations, during eight weeks of administration, previously the extraction, and Group II - control group, 15 rats didn't received any medication before extraction. The groups were subdivided in postoperative periods: 14/28/42 days. Clinical analysis and microtomography were performed to verify the presence of osteonecrosis. In addition, descritive histological analysis of hematoxylin-eosin stained sections was performed to evaluate the presence of osteonecrosis or necrotic foci. RESULTS: Twelve (40%) rats, from experimental group, showed clinical signs of MRONJ (p=0.005), however, all samples showed imaginologic findings like osteolysis and loss of integrity of the cellular walls (p≤0.001). Microscopic evaluation revealed osteonecrosis areas with microbial colonies and inflammatory infiltrate (p≤0.001). In the control group, all animals presented the chronology of a normal wound healing. CONCLUSIONS: The presence of medication-related osteonecrosis of the jaw after maxillary central incisor extraction in rats. This new experimental model may be considered an option for the study of MRONJ.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Bisphosphonates: the first 40 years.

          R. Russell (2011)
          The first full publications on the biological effects of the diphosphonates, later renamed bisphosphonates, appeared in 1969, so it is timely after 40years to review the history of their development and their impact on clinical medicine. This special issue of BONE contains a series of review articles covering the basic science and clinical aspects of these drugs, written by some of many scientists who have participated in the advances made in this field. The discovery and development of the bisphosphonates (BPs) as a major class of drugs for the treatment of bone diseases has been a fascinating story, and is a paradigm of a successful journey from 'bench to bedside'. Bisphosphonates are chemically stable analogues of inorganic pyrophosphate (PPi), and it was studies on the role of PPi as the body's natural 'water softener' in the control of soft tissue and skeletal mineralisation that led to the need to find inhibitors of calcification that would resist hydrolysis by alkaline phosphatase. The observation that PPi and BPs could not only retard the growth but also the dissolution of hydroxyapatite crystals prompted studies on their ability to inhibit bone resorption. Although PPi was unable to do this, BPs turned out to be remarkably effective inhibitors of bone resorption, both in vitro and in vivo experimental systems, and eventually in humans. As ever more potent BPs were synthesised and studied, it became apparent that physico-chemical effects were insufficient to explain their biological effects, and that cellular actions must be involved. Despite many attempts, it was not until the 1990s that their biochemical actions were elucidated. It is now clear that bisphosphonates inhibit bone resorption by being selectively taken up and adsorbed to mineral surfaces in bone, where they interfere with the action of the bone-resorbing osteoclasts. Bisphosphonates are internalised by osteoclasts and interfere with specific biochemical processes. Bisphosphonates can be classified into at least two groups with different molecular modes of action. The simpler non-nitrogen containing bisphosphonates (such as etidronate and clodronate) can be metabolically incorporated into non-hydrolysable analogues of ATP, which interfere with ATP-dependent intracellular pathways. The more potent, nitrogen-containing bisphosphonates (including pamidronate, alendronate, risedronate, ibandronate and zoledronate) are not metabolised in this way but inhibit key enzymes of the mevalonate/cholesterol biosynthetic pathway. The major enzyme target for bisphosphonates is farnesyl pyrophosphate synthase (FPPS), and the crystal structure elucidated for this enzyme reveals how BPs bind to and inhibit at the active site via their critical N atoms. Inhibition of FPPS prevents the biosynthesis of isoprenoid compounds (notably farnesol and geranylgeraniol) that are required for the post-translational prenylation of small GTP-binding proteins (which are also GTPases) such as rab, rho and rac, which are essential for intracellular signalling events within osteoclasts. The accumulation of the upstream metabolite, isopentenyl pyrophosphate (IPP), as a result of inhibition of FPPS may be responsible for immunomodulatory effects on gamma delta (γδ) T cells, and can also lead to production of another ATP metabolite called ApppI, which has intracellular actions. Effects on other cellular targets, such as osteocytes, may also be important. Over the years many hundreds of BPs have been made, and more than a dozen have been studied in man. As reviewed elsewhere in this issue, bisphosphonates are established as the treatments of choice for various diseases of excessive bone resorption, including Paget's disease of bone, the skeletal complications of malignancy, and osteoporosis. Several of the leading BPs have achieved 'block-buster' status with annual sales in excess of a billion dollars. As a class, BPs share properties in common. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various BPs. Each BP has a unique profile in terms of mineral binding and cellular effects that may help to explain potential clinical differences among the BPs. Even though many of the well-established BPs have come or are coming to the end of their patent life, their use as cheaper generic drugs is likely to continue for many years to come. Furthermore in many areas, e.g. in cancer therapy, the way they are used is not yet optimised. New 'designer' BPs continue to be made, and there are several interesting potential applications in other areas of medicine, with unmet medical needs still to be fulfilled. The adventure that began in Davos more than 40 years ago is not yet over. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws.

            (2007)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data.

              Bisphosphonate-related osteonecrosis of the jaw (BRONJ) has generated great interest in the medical and research communities yet remains an enigma, given its unknown pathogenesis. The goal of this review is to summarize the various proposed hypotheses underlying BRONJ. Although a role of the oral mucosa has been proposed, the bone is likely the primary tissue of interest for BRONJ. The most popular BRONJ hypothesis-manifestation of necrotic bone resulting from bisphosphonate--induced remodeling suppression--is supported mostly by indirect evidence, although recent data have shown that bisphosphonates significantly reduce remodeling in the jaw. Remodeling suppression would be expected, and has been shown, to allow accumulation of nonviable osteocytes, whereas a more direct cytotoxic effect of bisphosphonates on osteocytes has also been proposed. Bisphosphonates have antiangiogenic effects, leading to speculation that this could contribute to the BRONJ pathogenesis. Compromised angiogenesis would most likely be involved in post-intervention healing, although other aspects of the vasculature (eg, blood flow) could contribute to BRONJ. Despite infection being present in many BRONJ patients, there is no clear evidence as to whether infection is a primary or secondary event in the pathophysiology. In addition to these main factors proposed in the pathogenesis, numerous cofactors associated with BRONJ (eg, diabetes, smoking, dental extraction, concurrent medications) could interact with bisphosphonates and affect remodeling, angiogenesis/blood flow, and/or infection. Because our lack of knowledge concerning BRONJ pathogenesis results from a lack of data, it is only through the initiation of hypothesis-driven studies that significant progress will be made to understand this serious and debilitating condition.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                acb
                Acta Cirurgica Brasileira
                Acta Cir. Bras.
                Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia
                1678-2674
                May 2016
                : 31
                : 5
                : 308-313
                Affiliations
                [1 ] Universidade Sagrado Coração Brazil
                [2 ] Universidade de São Paulo Brazil
                [3 ] Universidade de São Paulo Brazil
                [4 ] USC Brazil
                [5 ] Universidade Estadual Paulista Brazil
                [6 ] Universidade de São Paulo Brazil
                [7 ] Universidade de São Paulo Brazil
                Article
                S0102-86502016000500308
                10.1590/S0102-865020160050000003
                aab1a1ad-fe48-41d3-9a6e-42f2cf113f51

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0102-8650&lng=en
                Categories
                SURGERY

                Surgery
                Bisphosphonate-Associated Osteonecrosis of the Jaw,Rats.
                Surgery
                Bisphosphonate-Associated Osteonecrosis of the Jaw, Rats.

                Comments

                Comment on this article