14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Improved Succinate Production by Metabolic Engineering

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Succinate is a promising chemical which has wide applications and can be produced by biological route. The history of the biosuccinate production shows that the joint effort of different metabolic engineering approaches brings successful results. In order to enhance the succinate production, multiple metabolical strategies have been sought. In this review, different overproducers for succinate production, including natural succinate overproducers and metabolic engineered overproducers, are examined and the metabolic engineering strategies and performances are discussed. Modification of the mechanism of substrate transportation, knocking-out genes responsible for by-products accumulation, overexpression of the genes directly involved in the pathway, and improvement of internal NADH and ATP formation are some of the strategies applied. Combination of the appropriate genes from homologous and heterologous hosts, extension of substrate, integrated production of succinate, and other high-value-added products are expected to bring a desired objective of producing succinate from renewable resources economically and efficiently.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Glycerol: a promising and abundant carbon source for industrial microbiology.

          Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly(butylene succinate) and its copolymers: research, development and industrialization.

            Poly(butylene succinate) (PBS) and its copolymers are a family of biodegradable polymers with excellent biodegradability, thermoplastic processability and balanced mechanical properties. In this article, production of the monomers succinic acid and butanediol, synthesis, processing and properties of PBS and its copolymers are reviewed. The physical properties and biodegradation rate of PBS materials can be varied in a wide range through copolymerization with different types and various contents of monomers. PBS has a wide temperature window for thermoplastic processing, which makes the resin suitable for extrusion, injection molding, thermoforming and film blowing. Finally, we summarized industrialization and applications of PBS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate.

              Derivatives of Escherichia coli C were engineered to produce primarily succinate or malate in mineral salts media using simple fermentations (anaerobic stirred batch with pH control) without the addition of plasmids or foreign genes. This was done by a combination of gene deletions (genetic engineering) and metabolic evolution with over 2,000 generations of growth-based selection. After deletion of the central anaerobic fermentation genes (ldhA, adhE, ackA), the pathway for malate and succinate production remained as the primary route for the regeneration of NAD+. Under anaerobic conditions, ATP production for growth was obligately coupled to malate dehydrogenase and fumarate reductase by the requirement for NADH oxidation. Selecting strains for improved growth co-selected increased production of these dicarboxylic acids. Additional deletions were introduced as further improvements (focA, pflB, poxB, mgsA). The best succinate biocatalysts, strains KJ060(ldhA, adhE, ackA, focA, pflB) and KJ073(ldhA, adhE, ackA, focA, pflB, mgsA, poxB), produce 622-733 mM of succinate with molar yields of 1.2-1.6 per mole of metabolized glucose. The best malate biocatalyst, strain KJ071(ldhA, adhE, ackA, focA, pflB, mgsA), produced 516 mM malate with molar yields of 1.4 per mole of glucose metabolized.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2013
                18 April 2013
                : 2013
                : 538790
                Affiliations
                1Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
                2Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
                Author notes

                Academic Editor: Eugénio Ferreira

                Article
                10.1155/2013/538790
                3652112
                23691505
                aafe317a-384d-4c79-b3ed-83e4b7ca3040
                Copyright © 2013 Ke-Ke Cheng et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 November 2012
                : 12 March 2013
                : 17 March 2013
                Categories
                Review Article

                Comments

                Comment on this article