3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploration of the COVID-19 pandemic at the neighborhood level in an intra-urban setting

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic represents a worldwide threat to health. Since its onset in 2019, the pandemic has proceeded in different phases, which have been shaped by a complex set of influencing factors, including public health and social measures, the emergence of new virus variants, and seasonality. Understanding the development of COVID-19 incidence and its spatiotemporal patterns at a neighborhood level is crucial for local health authorities to identify high-risk areas and develop tailored mitigation strategies. However, analyses at the neighborhood level are scarce and mostly limited to specific phases of the pandemic. The aim of this study was to explore the development of COVID-19 incidence and spatiotemporal patterns of incidence at a neighborhood scale in an intra-urban setting over several pandemic phases (March 2020–December 2021). We used reported COVID-19 case data from the health department of the district Berlin-Neukölln, Germany, additional socio-demographic data, and text documents and materials on implemented public health and social measures. We examined incidence over time in the context of the measures and other influencing factors, with a particular focus on age groups. We used incidence maps and spatial scan statistics to reveal changing spatiotemporal patterns. Our results show that several factors may have influenced the development of COVID-19 incidence. In particular, the far-reaching measures for contact reduction showed a substantial impact on incidence in Neukölln. We observed several age group-specific effects: school closures had an effect on incidence in the younger population (< 18 years), whereas the start of the vaccination campaign had an impact primarily on incidence among the elderly (> 65  years). The spatial analysis revealed that high-risk areas were heterogeneously distributed across the district. The location of high-risk areas also changed across the pandemic phases. In this study, existing intra-urban studies were supplemented by our investigation of the course of the pandemic and the underlying processes at a small scale over a long period of time. Our findings provide new insights for public health authorities, community planners, and policymakers about the spatiotemporal development of the COVID-19 pandemic at the neighborhood level. These insights are crucial for guiding decision-makers in implementing mitigation strategies.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)

          COVID-19 has prompted unprecedented government action around the world. We introduce the Oxford COVID-19 Government Response Tracker (OxCGRT), a dataset that addresses the need for continuously updated, readily usable and comparable information on policy measures. From 1 January 2020, the data capture government policies related to closure and containment, health and economic policy for more than 180 countries, plus several countries' subnational jurisdictions. Policy responses are recorded on ordinal or continuous scales for 19 policy areas, capturing variation in degree of response. We present two motivating applications of the data, highlighting patterns in the timing of policy adoption and subsequent policy easing and reimposition, and illustrating how the data can be combined with behavioural and epidemiological indicators. This database enables researchers and policymakers to explore the empirical effects of policy responses on the spread of COVID-19 cases and deaths, as well as on economic and social welfare.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global database of COVID-19 vaccinations

            An effective rollout of vaccinations against COVID-19 offers the most promising prospect of bringing the pandemic to an end. We present the Our World in Data COVID-19 vaccination dataset, a global public dataset that tracks the scale and rate of the vaccine rollout across the world. This dataset is updated regularly and includes data on the total number of vaccinations administered, first and second doses administered, daily vaccination rates and population-adjusted coverage for all countries for which data are available (169 countries as of 7 April 2021). It will be maintained as the global vaccination campaign continues to progress. This resource aids policymakers and researchers in understanding the rate of current and potential vaccine rollout; the interactions with non-vaccination policy responses; the potential impact of vaccinations on pandemic outcomes such as transmission, morbidity and mortality; and global inequalities in vaccine access.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study

              Summary Background Non-pharmaceutical interventions have been implemented to reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been crucial to support evidence-based policy making during the early stages of the epidemic. This study assesses the potential impact of different control measures for mitigating the burden of COVID-19 in the UK. Methods We used a stochastic age-structured transmission model to explore a range of intervention scenarios, tracking 66·4 million people aggregated to 186 county-level administrative units in England, Wales, Scotland, and Northern Ireland. The four base interventions modelled were school closures, physical distancing, shielding of people aged 70 years or older, and self-isolation of symptomatic cases. We also modelled the combination of these interventions, as well as a programme of intensive interventions with phased lockdown-type restrictions that substantially limited contacts outside of the home for repeated periods. We simulated different triggers for the introduction of interventions, and estimated the impact of varying adherence to interventions across counties. For each scenario, we projected estimated new cases over time, patients requiring inpatient and critical care (ie, admission to the intensive care units [ICU]) treatment, and deaths, and compared the effect of each intervention on the basic reproduction number, R 0. Findings We projected a median unmitigated burden of 23 million (95% prediction interval 13–30) clinical cases and 350 000 deaths (170 000–480 000) due to COVID-19 in the UK by December, 2021. We found that the four base interventions were each likely to decrease R 0, but not sufficiently to prevent ICU demand from exceeding health service capacity. The combined intervention was more effective at reducing R 0, but only lockdown periods were sufficient to bring R 0 near or below 1; the most stringent lockdown scenario resulted in a projected 120 000 cases (46 000–700 000) and 50 000 deaths (9300–160 000). Intensive interventions with lockdown periods would need to be in place for a large proportion of the coming year to prevent health-care demand exceeding availability. Interpretation The characteristics of SARS-CoV-2 mean that extreme measures are probably required to bring the epidemic under control and to prevent very large numbers of deaths and an excess of demand on hospital beds, especially those in ICUs. Funding Medical Research Council.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                13 April 2023
                2023
                13 April 2023
                : 11
                : 1128452
                Affiliations
                [1] 1Applied Geoinformation Science, Geography Department, Humboldt University Berlin , Berlin, Germany
                [2] 2Integrative Research Institute on Transformations of Human Environment Systems (IRI THESys) , Berlin, Germany
                [3] 3Department of Public Health Neukölln, District Office Neukölln , Berlin, Germany
                Author notes

                Edited by: Gabriel Gulis, University of Southern Denmark, Denmark

                Reviewed by: Blake Byron Walker, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Teddy Lazebnik, University College London, United Kingdom

                *Correspondence: Tillman Schmitz, tillman.schmitz@ 123456hu-berlin.de

                These authors share first authorship

                This article was submitted to Public Health Policy, a section of the journal Frontiers in Public Health

                Article
                10.3389/fpubh.2023.1128452
                10133460
                ac47cda5-da5d-49a9-8594-6a481af599cb
                Copyright © 2023 Schmitz, Lakes, Manafa, Lambio, Butler, Roth and Savaskan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2022
                : 24 March 2023
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 91, Pages: 13, Words: 10843
                Funding
                Funded by: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation
                Award ID: 492361591
                Categories
                Public Health
                Original Research

                covid-19,spatiotemporal analysis,public health measure,spatial scan statistics,age groups,urban health

                Comments

                Comment on this article