254
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transformation optics and metamaterials

      , ,
      Nature Materials
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Metamaterials and negative refractive index.

          Recently, artificially constructed metamaterials have become of considerable interest, because these materials can exhibit electromagnetic characteristics unlike those of any conventional materials. Artificial magnetism and negative refractive index are two specific types of behavior that have been demonstrated over the past few years, illustrating the new physics and new applications possible when we expand our view as to what constitutes a material. In this review, we describe recent advances in metamaterials research and discuss the potential that these materials may hold for realizing new and seemingly exotic electromagnetic phenomena.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional optical metamaterial with a negative refractive index.

            Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On cloaking for elasticity and physical equations with a transformation invariant form

                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nature Mater
                Springer Science and Business Media LLC
                1476-1122
                1476-4660
                May 2010
                April 23 2010
                May 2010
                : 9
                : 5
                : 387-396
                Article
                10.1038/nmat2743
                20414221
                acb73884-bd89-4612-b86b-544e890fe5f9
                © 2010

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article