49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

          Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I.

            The ubiquitin ligase TRIM25 mediates Lysine 63-linked ubiquitination of the N-terminal CARD domains of the viral RNA sensor RIG-I to facilitate type I interferon (IFN) production and antiviral immunity. Here, we report that the influenza A virus nonstructural protein 1 (NS1) specifically inhibits TRIM25-mediated RIG-I CARD ubiquitination, thereby suppressing RIG-I signal transduction. A novel domain in NS1 comprising E96/E97 residues mediates its interaction with the coiled-coil domain of TRIM25, thus blocking TRIM25 multimerization and RIG-I CARD domain ubiquitination. Furthermore, a recombinant influenza A virus expressing an E96A/E97A NS1 mutant is defective in blocking TRIM25-mediated antiviral IFN response and loses virulence in mice. Our findings reveal a mechanism by which influenza virus inhibits host IFN response and also emphasize the vital role of TRIM25 in modulating antiviral defenses.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Neuraminidase inhibitors for influenza.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                10 November 2010
                : 5
                : 11
                : e13927
                Affiliations
                [1 ]Department of Immunology, University of Toronto, Toronto, Canada
                [2 ]Department of Pathology, University of Hong Kong, Hong Kong, People's Republic of China
                [3 ]Department of Microbiology, University of Hong Kong, Hong Kong, People's Republic of China
                [4 ]Biogen Idec Inc., Cambridge, Massachusetts, United States of America
                [5 ]Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
                [6 ]Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Canada
                Tsinghua University, China
                Author notes

                Conceived and designed the experiments: DJ JSMP JMN ENF. Performed the experiments: DJ RR RWYC SML MCC. Analyzed the data: DJ RR RWYC MCC BXW JSMP JMN ENF. Contributed reagents/materials/analysis tools: DPB BS JMN. Wrote the paper: DJ RR ENF. Involved in editing the manuscript and reviewing the different drafts: DPB. Provided input for data interpretation: DPB. Involved in reviewing the manuscript: BS.

                Article
                10-PONE-RA-20440R1
                10.1371/journal.pone.0013927
                2978095
                21085662
                acc2642e-ad77-4e12-bca8-7d07e07d94a7
                Jia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 June 2010
                : 18 October 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Virology
                Virology/Immune Evasion
                Infectious Diseases/Viral Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article