5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Depot- and obesity-related differences in adipogenesis

      ,
      Clinical Lipidology
      Future Medicine Ltd

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes.

          Genetic association studies are viewed as problematic and plagued by irreproducibility. Many associations have been reported for type 2 diabetes, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-gamma(PPARgamma) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (85% frequency). Moreover, our results resolve a controversy about common variation in PPARgamma. An initial study found a threefold effect, but four of five subsequent publications failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARgamma in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk-influencing as much as 25% of type 2 diabetes in the general population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity.

            The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a transcription factor that has a pivotal role in adipocyte differentiation and expression of adipocyte-specific genes. The PPARgamma1 and gamma2 isoforms result from alternative splicing and have ligand-dependent and -independent activation domains. PPARgamma2 has an additional 28 amino acids at its amino terminus that renders its ligand-independent activation domain 5-10-fold more effective than that of PPARgamma1. Insulin stimulates the ligand-independent activation of PPARgamma1 and gamma2 (ref. 5), however, obesity and nutritional factors only influence the expression of PPARgamma2 in human adipocytes. Here, we report that a relatively common Pro12Ala substitution in PPARgamma2 is associated with lower body mass index (BMI; P=0.027; 0.015) and improved insulin sensitivity among middle-aged and elderly Finns. A significant odds ratio (4.35, P=0.028) for the association of the Pro/Pro genotype with type 2 diabetes was observed among Japanese Americans. The PPARgamma2 Ala allele showed decreased binding affinity to the cognate promoter element and reduced ability to transactivate responsive promoters. These findings suggest that the PPARgamma2 Pro12Ala variant may contribute to the observed variability in BMI and insulin sensitivity in the general population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology

              OBJECTIVE Adipose tissue may contain few large adipocytes (hypertrophy) or many small adipocytes (hyperplasia). We investigated factors of putative importance for adipose tissue morphology. RESEARCH DESIGN AND METHODS Subcutaneous adipocyte size and total fat mass were compared in 764 subjects with BMI 18–60 kg/m2. A morphology value was defined as the difference between the measured adipocyte volume and the expected volume given by a curved-line fit for a given body fat mass and was related to insulin values. In 35 subjects, in vivo adipocyte turnover was measured by exploiting incorporation of atmospheric 14C into DNA. RESULTS Occurrence of hyperplasia (negative morphology value) or hypertrophy (positive morphology value) was independent of sex and body weight but correlated with fasting plasma insulin levels and insulin sensitivity, independent of adipocyte volume (β-coefficient = 0.3, P < 0.0001). Total adipocyte number and morphology were negatively related (r = −0.66); i.e., the total adipocyte number was greatest in pronounced hyperplasia and smallest in pronounced hypertrophy. The absolute number of new adipocytes generated each year was 70% lower (P < 0.001) in hypertrophy than in hyperplasia, and individual values for adipocyte generation and morphology were strongly related (r = 0.7, P < 0.001). The relative death rate (∼10% per year) or mean age of adipocytes (∼10 years) was not correlated with morphology. CONCLUSIONS Adipose tissue morphology correlates with insulin measures and is linked to the total adipocyte number independently of sex and body fat level. Low generation rates of adipocytes associate with adipose tissue hypertrophy, whereas high generation rates associate with adipose hyperplasia.
                Bookmark

                Author and article information

                Journal
                Clinical Lipidology
                Clinical Lipidology
                Future Medicine Ltd
                1758-4299
                October 2012
                October 2012
                : 7
                : 5
                : 587-596
                Article
                10.2217/clp.12.49
                acf435e7-2ec9-47f9-945e-3dbe4d81a413
                © 2012
                History

                Comments

                Comment on this article