44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dementia of the eye: the role of amyloid beta in retinal degeneration

      review-article
      1 , * , 2 , 1
      Eye
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (A β), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link A β with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that A β may be a key factor in AMD pathology. We describe how multiple A β reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of A β-mediated degenerative change leading to AMD.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of age-related macular degeneration in the United States.

            To estimate the prevalence and distribution of age-related macular degeneration (AMD) in the United States by age, race/ethnicity, and gender. Summary prevalence estimates of drusen 125 microm or larger, neovascular AMD, and geographic atrophy were prepared separately for black and white persons in 5-year age intervals starting at 40 years. The estimated rates were based on a meta-analysis of recent population-based studies in the United States, Australia, and Europe. These rates were applied to 2000 US Census data and to projected US population figures for 2020 to estimate the number of the US population with drusen and AMD. The overall prevalence of neovascular AMD and/or geographic atrophy in the US population 40 years and older is estimated to be 1.47% (95% confidence interval, 1.38%-1.55%), with 1.75 million citizens having AMD. The prevalence of AMD increased dramatically with age, with more than 15% of the white women older than 80 years having neovascular AMD and/or geographic atrophy. More than 7 million individuals had drusen measuring 125 microm or larger and were, therefore, at substantial risk of developing AMD. Owing to the rapidly aging population, the number of persons having AMD will increase by 50% to 2.95 million in 2020. Age-related macular degeneration was far more prevalent among white than among black persons. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number will increase to almost 3 million by 2020.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drusen proteome analysis: an approach to the etiology of age-related macular degeneration.

              Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized approximately 16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.
                Bookmark

                Author and article information

                Journal
                Eye (Lond)
                Eye (Lond)
                Eye
                Nature Publishing Group
                0950-222X
                1476-5454
                August 2015
                19 June 2015
                1 August 2015
                : 29
                : 8
                : 1013-1026
                Affiliations
                [1 ]Clinical and Experimental Science, Faculty of Medicine, University of Southampton , Southampton, UK
                [2 ]School of Life Sciences (Biochemistry, Dementia Research Group), University of Sussex , Brighton, UK
                Author notes
                [* ]Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton , LD73, MP806, South Lab and Path Block, Southampton General Hospital, Tremona Road, Southampton SO16 6DY, UK Tel: +44 (0)23 8079 8182; Fax: +44 (0)23 8079 6085. E-mail: J.Ratnayaka@ 123456soton.ac.uk
                Article
                eye2015100
                10.1038/eye.2015.100
                4541342
                26088679
                ad26a38a-065f-4687-96fe-57930cf1405b
                Copyright © 2015 Royal College of Ophthalmologists

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce thematerial. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 27 February 2015
                : 23 April 2015
                Categories
                Review

                Vision sciences
                Vision sciences

                Comments

                Comment on this article