11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining Actigraph Link and PetPace Collar Data to Measure Activity, Proximity, and Physiological Responses in Freely Moving Dogs in a Natural Environment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The Actigraph accelerometry monitors, the most widely used and extensively validated devices for measuring physical activity in humans, have also been validated for use in dogs. The ActiGraph GT9X Link monitor has Bluetooth Smart technology and a proximity-tagging feature that potentially allows for the measurement of distance between subjects, e.g., between human caretakers and their dog(s). The PetPace Smart-collar is a non-invasive wireless collar that collects important health markers, including heart beats, variation in the intervals between heartbeats, breaths per minute, and position data (lying, sitting, standing), in addition to activity. The purpose of this study was to determine whether combining data from the Actigraph monitor and PetPace collar would provide reliable pulse, respiration, and heart rate variability results during various activity levels in dogs, and whether these variables were affected by the absence or presence of their caretakers.

          Abstract

          Although several studies have examined the effects of an owner’s absence and presence on a dog’s physiological responses under experimental conditions over short periods of time (minutes), little is known about the effects of proximity between humans and freely moving dogs under natural conditions over longer periods of time (days). The first aim of our study was to determine whether the combined data generated from the PetPace Collar and Actigraph Link accelerometer provide reliable pulse, respiration, and heart rate variability results during sedentary, light-moderate, and vigorous bouts in 11 freely moving dogs in a foster caretaker environment over 10–15 days. The second aim was to determine the effects of proximity (absence and presence of caretaker) and distance (caretaker and dog within 0–2 m) on the dogs’ physiological responses. Aim 1 results: Pulse and respiration were higher during light-moderate bouts compared to sedentary bouts, and higher at rest while the dogs were standing and sitting vs. lying. Heart rate variability (HRV) was not different between activity levels or position. Aim 2 results: During sedentary bouts, pulse and respiration were higher, and HRV lower, when there was a proximity signal (caretaker present) compared to no proximity signal (caretaker absent). Using multiple regression models, we found that activity, position, distance, and signal presence were predictors of physiological response in individual dogs during sedentary bouts. Our results suggest that combining data collected from Actigraph GT9X and PetPace monitors will provide useful information, both collectively and individually, on dogs’ physiological responses during activity, in various positions, and in proximity to their human caretaker.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Human Analogue Safe Haven Effect of the Owner: Behavioural and Heart Rate Response to Stressful Social Stimuli in Dogs

          The secure base and safe haven effects of the attachment figure are central features of the human attachment theory. Recently, conclusive evidence for human analogue attachment behaviours in dogs has been provided, however, the owner’s security-providing role in danger has not been directly supported. We investigated the relationship between the behavioural and cardiac response in dogs (N = 30) while being approached by a threatening stranger in separation vs. in the presence of the owner, presented in a balanced order. Non-invasive telemetric measures of heart rate (HR) and heart rate variability (HRV) data during the threatening approaches was compared to periods before and after the encounters. Dogs that showed distress vocalisation during separation (N = 18) and that growled or barked at the stranger during the threatening approach (N = 17) were defined as behaviourally reactive in the given situation. While characteristic stress vocalisations were emitted during separations, the absence of the owner did not have an effect on dogs’ mean HR, but significantly increased the HRV. The threatening approach increased dogs’ mean HR, with a parallel decrease in the HRV, particularly in dogs that were behaviourally reactive to the encounter. Importantly, the HR increase was significantly less pronounced when dogs faced the stranger in the presence of the owner. Moreover, the test order, whether the dog encountered the stranger first with or without its owner, also proved important: HR increase associated with the encounter in separation seemed to be attenuated in dogs that faced the stranger first in the presence of their owner. We provided evidence for human analogue safe haven effect of the owner in a potentially dangerous situation. Similarly to parents of infants, owners can provide a buffer against stress in dogs, which can even reduce the effect of a subsequent encounter with the same threatening stimuli later when the owner is not present.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of dog-walking on autonomic nervous activity in senior citizens.

            To compare changes in autonomic nervous activity in healthy senior individuals while walking with and without a dog, and during routine activities at home and periods of interacting with the dog at home. Controlled crossover study. 13 healthy volunteers (3 men, 10 women; mean age, 67.5 years) who walked in a park adjacent to Gunma University, Japan, and 4 volunteers among these who underwent monitoring in their own homes. Heart rate variability was monitored continuously by means of a palm-sized electrocardiographic monitor (which facilitated spectral analysis of the RR interval) while participants walked for 30 minutes (first with, then without, the study dog, or vice versa); three participants underwent this intervention on 3 consecutive days. Four participants underwent continuous monitoring for 6 hours in their own homes, including two 30-minute periods of free interaction with the study dog. High frequency (HF) power values of heart rate variability, which is a measure of parasympathetic neural activity. During dog-walking, HF power increased significantly (P < 0.01); this increase was sustained throughout each dog walk, and was more pronounced during succeeding dog walks. At home, HF power was 1.87 times greater when the dog was present, and 1.57 times greater (P < 0.01) than in the walking experiment. Walking a dog has potentially greater health benefits as a buffer against stress in senior citizens than walking without a dog; and, independent of actually walking, merely patting and talking to a dog also raises parasympathetic neural activity. Power spectral analysis of heart rate variability shows promise as a non-invasive approach to quantifying clinicophysiological research on human health benefits possibly derived from interaction with companion animals.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Heart rate variability and saliva cortisol assessment in shelter dog: Human–animal interaction effects

                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                04 December 2018
                December 2018
                : 8
                : 12
                : 230
                Affiliations
                [1 ]Geriatric Research Education Clinical Center, VA Maryland Health Care System, Baltimore, MD 21201, USA; Lynda.Robey@ 123456va.gov (L.R.); Tara.McDonald@ 123456va.gov (T.M.)
                [2 ]Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
                Author notes
                [* ]Correspondence: Heidi.Ortmeyer@ 123456va.gov or hortmeye@ 123456som.umaryland.edu ; Tel.: +410-605-7000 (ext. 55419)
                Article
                animals-08-00230
                10.3390/ani8120230
                6316215
                30518086
                ad610942-6720-4644-867a-4e61b3b1c0e5
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 August 2018
                : 01 December 2018
                Categories
                Article

                actigraph,accelerometry,petpace,proximity,rescue dogs,foster caretakers,pulse,respiration,heart rate variability,vasovagal tonal index

                Comments

                Comment on this article