4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insulin treatment enhances AT1 receptor function in OK cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased renal sodium retention is considered a major risk factor contributing to hypertension associated with chronic hyperinsulinemia and obesity. However, the molecular mechanism involved is not understood. The present study investigates the effect of insulin treatment on AT1 receptor expression and ANG II-induced stimulation of Na/H exchanger (NHE) and Na-K-ATPase (NKA) in opossum kidney (OK) cells, a proximal tubule cell line. The presence of the AT1 receptors in OK cells was confirmed by the specific binding of 125I-sar-ANG II and by detecting approximately 43-kDa protein on Western blot analysis with AT1 receptor antibody and blocking peptide as well as by expression of AT1 receptor mRNA as determined by RT-PCR. Insulin treatment (100 nM for 24 h) caused an increase in 125I-sar-ANG II binding, AT1 receptor protein content, and mRNA levels. The whole cell lysate and membrane showed similar insulin-induced increase in the AT1 receptor protein expression, which was blocked by genistein (100 nM), a tyrosine kinase inhibitor, and cycloheximide (1.5 microg/ml), a protein synthesis inhibitor. Determination of ethyl isopropyl amiloride-sensitive 22Na+ uptake, a measure of the NHE activity, revealed that ANG II (1-100 pM)-induced stimulation of NHE in insulin-treated cells was significantly greater than in the control cells. Similarly, ANG II (1-100 pM)-induced stimulation of ouabain-sensitive 86Rb+ uptake, a measure of NKA activity in insulin-treated cells, was significantly greater than in the control cells. ANG II stimulation of both the transporters was blocked by AT1 receptor antagonist losartan, suggesting the involvement of AT1 receptors. Thus chronic insulin treatment causes upregulation of AT1 receptors, which evoked ANG II-induced stimulation of NHE and NKA. We propose that insulin-induced increase in the renal AT1 receptor function serves as a mechanism responsible for the increased renal sodium reabsorption and thus may contribute to development of hypertension in conditions associated with hyperinsulinemia.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol. Renal Physiol.
          American journal of physiology. Renal physiology
          American Physiological Society
          1931-857X
          1522-1466
          Jun 2005
          : 288
          : 6
          Affiliations
          [1 ] Heart and Kidney Institute, College of Pharmacy, University of Houston, TX 77204, USA.
          Article
          00361.2003
          10.1152/ajprenal.00361.2003
          15713908
          ae11d5c2-366b-4fad-b671-9bab6e01c617
          History

          Comments

          Comment on this article