150
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Microbial communities typically contain many rare taxa that make up the majority of the observed membership, yet the contribution of this microbial “rare biosphere” to community dynamics is unclear. Using 16S rRNA amplicon sequencing of 3,237 samples from 42 time series of microbial communities from nine different ecosystems (air; marine; lake; stream; adult human skin, tongue, and gut; infant gut; and brewery wastewater treatment), we introduce a new method to detect typically rare microbial taxa that occasionally become very abundant (conditionally rare taxa [CRT]) and then quantify their contributions to temporal shifts in community structure. We discovered that CRT made up 1.5 to 28% of the community membership, represented a broad diversity of bacterial and archaeal lineages, and explained large amounts of temporal community dissimilarity (i.e., up to 97% of Bray-Curtis dissimilarity). Most of the CRT were detected at multiple time points, though we also identified “one-hit wonder” CRT that were observed at only one time point. Using a case study from a temperate lake, we gained additional insights into the ecology of CRT by comparing routine community time series to large disturbance events. Our results reveal that many rare taxa contribute a greater amount to microbial community dynamics than is apparent from their low proportional abundances. This observation was true across a wide range of ecosystems, indicating that these rare taxa are essential for understanding community changes over time.

          IMPORTANCE

          Microbial communities and their processes are the foundations of ecosystems. The ecological roles of rare microorganisms are largely unknown, but it is thought that they contribute to community stability by acting as a reservoir that can rapidly respond to environmental changes. We investigated the occurrence of typically rare taxa that very occasionally become more prominent in their communities (“conditionally rare”). We quantified conditionally rare taxa in time series from a wide variety of ecosystems and discovered that not only were conditionally rare taxa present in all of the examples, but they also contributed disproportionately to temporal changes in diversity when they were most abundant. This result indicates an important and general role for rare microbial taxa within their communities.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fundamentals of Microbial Community Resistance and Resilience

          Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dormancy contributes to the maintenance of microbial diversity.

            Dormancy is a bet-hedging strategy used by a variety of organisms to overcome unfavorable environmental conditions. By entering a reversible state of low metabolic activity, dormant individuals become members of a seed bank, which can determine community dynamics in future generations. Although microbiologists have documented dormancy in both clinical and natural settings, the importance of seed banks for the diversity and functioning of microbial communities remains untested. Here, we develop a theoretical model demonstrating that microbial communities are structured by environmental cues that trigger dormancy. A molecular survey of lake ecosystems revealed that dormancy plays a more important role in shaping bacterial communities than eukaryotic microbial communities. The proportion of dormant bacteria was relatively low in productive ecosystems but accounted for up to 40% of taxon richness in nutrient-poor systems. Our simulations and empirical data suggest that regional environmental cues and dormancy synchronize the composition of active communities across the landscape while decoupling active microbes from the total community at local scales. Furthermore, we observed that rare bacterial taxa were disproportionately active relative to common bacterial taxa, suggesting that microbial rank-abundance curves are more dynamic than previously considered. We propose that repeated transitions to and from the seed bank may help maintain the high levels of microbial biodiversity that are observed in nearly all ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution

              We developed a fast method for denoising pyrosequencing for community 16S rRNA analysis. We observe a 2–4 fold reduction in the number of observed OTUs (operational taxonomic units) comparing denoised with non-denoised data. ~50,000 sequences can be denoised on a laptop within an hour, two orders of magnitude faster than published techniques. We demonstrate the effects of denoising on alpha and beta diversity of large 16S rRNA datasets.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                15 July 2014
                Jul-Aug 2014
                : 5
                : 4
                : e01371-14
                Affiliations
                [ a ]Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
                [ b ]Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
                [ c ]Institute for Genomic and Systems Biology, Argonne National Laboratory, Argonne, Illinois, USA
                [ d ]Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
                [ e ]Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
                [ f ]Howard Hughes Medical Institute, Boulder, Colorado, USA
                [ g ]Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
                [ h ]Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
                [ i ]Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
                [ j ]Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
                Author notes
                Address correspondence to Jack A. Gilbert, gilbertjack@ 123456anl.gov .

                Editor Nicole Dubilier, Max Planck Institute for Marine Microbiology

                Article
                mBio01371-14
                10.1128/mBio.01371-14
                4161262
                25028427
                ae947149-5135-4e9f-9b61-420ee1d5d13c
                Copyright © 2014 Shade et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 May 2014
                : 16 June 2014
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                July/August 2014

                Life sciences
                Life sciences

                Comments

                Comment on this article