8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm

      research-article
      , *
      Diagnostics
      MDPI
      skin cancer, skin lesion segmentation, melanoma, convolutional neural networks, Yolo, GrabCut

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin lesion segmentation has a critical role in the early and accurate diagnosis of skin cancer by computerized systems. However, automatic segmentation of skin lesions in dermoscopic images is a challenging task owing to difficulties including artifacts (hairs, gel bubbles, ruler markers), indistinct boundaries, low contrast and varying sizes and shapes of the lesion images. This paper proposes a novel and effective pipeline for skin lesion segmentation in dermoscopic images combining a deep convolutional neural network named as You Only Look Once (YOLO) and the GrabCut algorithm. This method performs lesion segmentation using a dermoscopic image in four steps: 1. Removal of hairs on the lesion, 2. Detection of the lesion location, 3. Segmentation of the lesion area from the background, 4. Post-processing with morphological operators. The method was evaluated on two publicly well-known datasets, that is the PH2 and the ISBI 2017 (Skin Lesion Analysis Towards Melanoma Detection Challenge Dataset). The proposed pipeline model has achieved a 90% sensitivity rate on the ISBI 2017 dataset, outperforming other deep learning-based methods. The method also obtained close results according to the results obtained from other methods in the literature in terms of metrics of accuracy, specificity, Dice coefficient, and Jaccard index.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

          In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

            Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

              Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.
                Bookmark

                Author and article information

                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                10 July 2019
                September 2019
                : 9
                : 3
                : 72
                Affiliations
                Department of Computer Engineering, Kırıkkale University, 71451 Kırıkkale, Turkey
                Author notes
                [* ]Correspondence: enesayan@ 123456kku.edu.tr
                Author information
                https://orcid.org/0000-0002-5463-8064
                Article
                diagnostics-09-00072
                10.3390/diagnostics9030072
                6787581
                31295856
                aeb75c38-9188-41ed-af92-2b7ae08782e9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 May 2019
                : 08 July 2019
                Categories
                Article

                skin cancer,skin lesion segmentation,melanoma,convolutional neural networks,yolo,grabcut

                Comments

                Comment on this article