25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium modulates force sensing by the von Willebrand factor A2 domain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insight into calcium-mediated stabilization of the native conformation that protects A2 from cleavage by ADAMTS-13. Unfolding of A2 requires higher forces when calcium is present and primarily proceeds through a mechanically stable intermediate with non-native calcium coordination. Calcium further accelerates refolding markedly, in particular, under applied load. We propose that calcium improves force sensing by allowing reversible force switching under physiologically relevant hydrodynamic conditions. Our data show for the first time the relevance of metal coordination for mechanical properties of a protein involved in mechanosensing.

          Abstract

          von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. Jakobi et al. reveal a calcium-binding site in the VWF-A2 domain, and show that calcium binding encourages folding of the protein and has a role in mechanosensing.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Biochemistry and genetics of von Willebrand factor.

          J Sadler (1998)
          Von Willebrand factor (VWF) is a blood glycoprotein that is required for normal hemostasis, and deficiency of VWF, or von Willebrand disease (VWD), is the most common inherited bleeding disorder. VWF mediates the adhesion of platelets to sites of vascular damage by binding to specific platelet membrane glycoproteins and to constituents of exposed connective tissue. These activities appear to be regulated by allosteric mechanisms and possibly by hydrodynamic shear forces. VWF also is a carrier protein for blood clotting factor VIII, and this interaction is required for normal factor VIII survival in the circulation. VWF is assembled from identical approximately 250 kDa subunits into disulfide-linked multimers that may be > 20,000 kDa. Mutations in VWD can disrupt this complex biosynthetic process at several steps to impair the assembly, intracellular targeting, or secretion of VWF multimers. Other VWD mutations impair the survival of VWF in plasma or the function of specific ligand binding sites. This growing body of information about VWF synthesis, structure, and function has allowed the reclassification of VWD based upon distinct pathophysiologic mechanisms that appear to correlate with clinical symptoms and the response to therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery.

            The fluorescence-based thermal shift assay is a general method for identification of inhibitors of target proteins from compound libraries. Using an environmentally sensitive fluorescent dye to monitor protein thermal unfolding, the ligand-binding affinity can be assessed from the shift of the unfolding temperature (Delta Tm) obtained in the presence of ligands relative to that obtained in the absence of ligands. In this article, we report that the thermal shift assay can be conducted in an inexpensive, commercially available device for temperature control and fluorescence detection. The binding affinities obtained from thermal shift assays are compared with the binding affinities measured by isothermal titration calorimetry and with the IC(50) values from enzymatic assays. The potential pitfalls in the data analysis of thermal shift assays are also discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Entropic elasticity of lambda-phage DNA.

                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                July 2011
                12 July 2011
                : 2
                : 385
                Affiliations
                [1 ]simpleCrystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.
                [2 ]simpleAMOLF Institute, Science Park 104 , 1098 XG Amsterdam, The Netherlands.
                Author notes
                Article
                ncomms1385
                10.1038/ncomms1385
                3144584
                21750539
                aecfe10a-0846-4378-8b26-9c7e2683e239
                Copyright © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 23 May 2011
                : 09 June 2011
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article