9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term "theranostics" represents a new paradigm in medicine especially for cancer treatment. This term was coined by Funkhouser in 2002 and defines a reagent that combines therapeutic and diagnostic properties. It is widely believed that theranostics agents will have considerable impact on healthcare before, during, and after disease by improving cancer prognosis and management simultaneously. Current theranostics approaches still rely on passive tumor targeting strategies, which have scattergun effects and tend to damage both neoplastic and non-neoplastic cells.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules

          Three major modes of cancer therapies, surgery, radiation and chemotherapy, have been the mainstay of modern oncologic therapy. To minimize side effects, molecular targeted cancer therapies including armed antibody therapy have been developed with limited success. In this study, we developed a new type of molecular targeted cancer therapy, photoimmunotherapy (PIT), employing a target-specific photosensitizer based on a near infrared (NIR) phthalocyanine dye, IR700, conjugated to monoclonal antibodies (MAb) targeting epidermal growth factor receptors (EGFR). Cell death was induced immediately only upon irradiating, MAb-IR700 bound, target cells with NIR light. In vivo tumor shrinkage after irradiation with NIR light was observed only in target EGFR-expressing cells. The MAb-IR700 conjugates were most effective when bound to the cell membrane, producing no phototoxicity when not bound, suggesting a different mechanism for PIT compared with conventional photodynamic therapies. Target selective PIT enables treatment of cancer based on MAb binding on the cell membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An engineered protein tag for multiprotein labeling in living cells.

            The visualization of complex cellular processes involving multiple proteins requires the use of spectroscopically distinguishable fluorescent reporters. We have previously introduced the SNAP-tag as a general tool for the specific labeling of SNAP-tag fusion proteins in living cells. The SNAP-tag is derived from the human DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) and can be covalently labeled in living cells using O6-benzylguanine derivatives bearing a chemical probe. Here we report the generation of an AGT-based tag, named CLIP-tag, which reacts specifically with O2-benzylcytosine derivatives. Because SNAP-tag and CLIP-tag possess orthogonal substrate specificities, SNAP and CLIP fusion proteins can be labeled simultaneously and specifically with different molecular probes in living cells. We furthermore show simultaneous pulse-chase experiments to visualize different generations of two different proteins in one sample.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of progress in clinical photodynamic therapy.

              Z. Huang (2005)
              Photodynamic therapy (PDT) has received increased attention since the regulatory approvals have been granted to several photosensitizing drugs and light applicators worldwide. Much progress has been seen in basic sciences and clinical photodynamics in recent years. This review will focus on new developments of clinical investigation and discuss the usefulness of various forms of PDT techniques for curative or palliative treatment of malignant and non-malignant diseases.
                Bookmark

                Author and article information

                Journal
                Journal of Cancer Research and Clinical Oncology
                J Cancer Res Clin Oncol
                Springer Nature
                0171-5216
                1432-1335
                May 2016
                February 2016
                : 142
                : 5
                : 1003-1011
                Article
                10.1007/s00432-016-2122-7
                26847542
                aed5e15f-ae96-454f-957f-63a4e7090033
                © 2016
                History

                Comments

                Comment on this article