80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Circuits controlling vertebrate locomotion: moving in a new direction.

          Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviours. The motor circuits in the spinal cord that control locomotion, commonly referred to as central pattern generator networks, provide an experimentally tractable model system for investigating how moderately complex ensembles of neurons generate select motor behaviours. The advent of novel molecular and genetic techniques coupled with recent advances in our knowledge of spinal cord development means that a comprehensive understanding of how the motor circuitry is organized and operates may be within our grasp.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved.

            We have studied the spatial and temporal distribution of six proinflammatory cytokines and identified their cellular source in a clinically relevant model of spinal cord injury (SCI). Our findings show that interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF) are rapidly (<5 and 15 minutes, respectively) and transiently expressed in mice following contusion. At 30-45 minutes post SCI, IL-1beta and TNF-positive cells could already be seen over the entire spinal cord segment analyzed. Multilabeling analyses revealed that microglia and astrocytes were the two major sources of IL-1beta and TNF at these times, suggesting a role for these cytokines in gliosis. Results obtained from SCI mice previously transplanted with green fluorescent protein (GFP)-expressing hematopoietic stem cells confirmed that neural cells were responsible for the production of IL-1beta and TNF for time points preceding 3 hours. From 3 hours up to 24 hours, IL-1beta, TNF, IL-6, and leukemia inhibitory factor (LIF) were strongly upregulated within and immediately around the contused area. Colocalization studies revealed that all populations of central nervous system resident cells, including neurons, synthesized cytokines between 3 and 24 hours post SCI. However, work done with SCI-GFP chimeric mice revealed that at least some infiltrating leukocytes were responsible for cytokine production from 12 hours on. By 2 days post-SCI, mRNA signal for all the above cytokines had nearly disappeared. Notably, we also observed another wave of expression for IL-1beta and TNF at 14 days. Overall, these results indicate that following SCI, all classes of neural cells initially contribute to the organization of inflammation, whereas recruited immune cells mostly contribute to its maintenance at later time points. (c) 2006 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organization of mammalian locomotor rhythm and pattern generation.

              Central pattern generators (CPGs) located in the spinal cord produce the coordinated activation of flexor and extensor motoneurons during locomotion. Previously proposed architectures for the spinal locomotor CPG have included the classical half-center oscillator and the unit burst generator (UBG) comprised of multiple coupled oscillators. We have recently proposed another organization in which a two-level CPG has a common rhythm generator (RG) that controls the operation of the pattern formation (PF) circuitry responsible for motoneuron activation. These architectures are discussed in relation to recent data obtained during fictive locomotion in the decerebrate cat. The data show that the CPG can maintain the period and phase of locomotor oscillations both during spontaneous deletions of motoneuron activity and during sensory stimulation affecting motoneuron activity throughout the limb. The proposed two-level CPG organization has been investigated with a computational model which incorporates interactions between the CPG, spinal circuits and afferent inputs. The model includes interacting populations of spinal interneurons and motoneurons modeled in the Hodgkin-Huxley style. Our simulations demonstrate that a relatively simple CPG with separate RG and PF networks can realistically reproduce many experimental phenomena including spontaneous deletions of motoneuron activity and a variety of effects of afferent stimulation. The model suggests plausible explanations for a number of features of real CPG operation that would be difficult to explain in the framework of the classical single-level CPG organization. Some modeling predictions and directions for further studies of locomotor CPG organization are discussed.
                Bookmark

                Author and article information

                Journal
                Front Neurol
                Front Neurol
                Front. Neur.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                08 February 2013
                2012
                : 3
                : 183
                Affiliations
                [1] 1Department of Psychiatry and Neurosciences, Laval University Quebec City, QC, Canada
                [2] 2Laval University Medical Center (CHU de Quebec) Quebec City, QC, Canada
                Author notes

                Edited by: Uner Tan, Cukurova University, Turkey

                Reviewed by: Uner Tan, Cukurova University, Turkey; Edouard Pearlstein, Centre National de la Recherche Scientifique, France

                *Correspondence: Pierre A. Guertin, CHU de Québec (CHUL), 2705 Laurier Boulevard, Room RC-9800 (Neuroscience Unit), Quebec City, QC G1V 4G2, Canada. e-mail: pierre.guertin@ 123456crchul.ulaval.ca

                This article was submitted to Frontiers in Movement Disorders, a specialty of Frontiers in Neurology.

                Article
                10.3389/fneur.2012.00183
                3567435
                23403923
                aedf2976-e7f8-40ab-83d3-2466f6218b26
                Copyright © 2013 Guertin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 28 November 2012
                : 14 December 2012
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 187, Pages: 15, Words: 15949
                Categories
                Neuroscience
                Review Article

                Neurology
                alternating leg movement activation,central pattern generator for locomotion,restless leg syndrome,rhythmic stereotyped patterns,spinal networks,uner tan syndrome

                Comments

                Comment on this article