9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Conserved structural features in eukaryotic and prokaryotic fucosyltransferases.

      Mycobiology
      Amino Acid Sequence, Animals, Consensus Sequence, Conserved Sequence, Evolution, Molecular, Fucosyltransferases, chemistry, classification, genetics, Humans, Molecular Sequence Data, Protein Structure, Secondary, Sequence Homology, Amino Acid

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fucosyltransferases are the enzymes transferring fucose from GDP-Fuc to Gal in an alpha1,2-linkage and to GlcNAc in alpha1,3-, alpha1,4-, or alpha1,6-linkages. Since all fucosyltransferases utilize the same nucleotide sugar, their specificity will probably reside in the recognition of the acceptor and in the type of linkage formed. A search of nucleotide and protein databases yielded more than 30 sequences of fucosyltransferases originating from mammals, chicken, nematode, and bacteria. On the basis of protein sequence similarities, these enzymes can be classified into four distinct families: (1) the alpha-2-fucosyltransferases, (2) the alpha-3-fucosyltransferases, (3) the mammalian alpha-6-fucosyltransferases, and (4) the bacterial alpha-6-fucosyltransferases. Nevertheless, using the sensitive hydrophobic cluster analysis (HCA) method, conserved structural features as well as a consensus peptide motif have been clearly identified in the catalytic domains of all alpha-2 and alpha-6-fucosyltranferases, from prokaryotic and eukaryotic origin, that allowed the grouping of these enzymes into one superfamily. In addition, a few amino acids were found strictly conserved in this family, and two of these residues have been reported to be essential for enzyme activity for a human alpha-2-fucosyltransferase. The alpha-3-fucosyltransferases constitute a distinct family as they lack the consensus peptide, but some regions display similarities with the alpha-2 and alpha-6-fucosyltranferases. All these observations strongly suggest that the fucosyltransferases share some common structural and catalytic features.

          Related collections

          Author and article information

          Comments

          Comment on this article