20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laboratory assessment of rivaroxaban: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research into new anticoagulants for preventing and treating thromboembolic disorders has focused on targeting single enzymes in the coagulation cascade, particularly Factor Xa and thrombin, inhibition of which greatly decreases thrombin generation. Based on the results of phase III clinical trials, rivaroxaban, a direct Factor Xa inhibitor, has been approved in many countries for the management of several thromboembolic disorders. Owing to its predictable pharmacokinetic and pharmacodynamic characteristics, fixed-dose regimens are used without the need for routine coagulation monitoring. In situations where assessment of rivaroxaban exposure may be helpful, anti-Factor Xa chromogenic assays (in tandem with standard calibration curves generated with the use of rivaroxaban calibrators and controls) could be used. It is important to note that test results will be affected by the timing of blood sampling after rivaroxaban intake. In addition, the anti-Factor Xa method measures the drug concentration and not the intensity of the drug’s anticoagulant activity, and a higher than expected rivaroxaban plasma level does not necessarily indicate an increased risk of bleeding complications. Therefore, clinicians need to consider test results in relation to the pharmacokinetics of rivaroxaban and other patient risk factors associated with bleeding.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Parenteral anticoagulants: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.

          This article describes the pharmacology of approved parenteral anticoagulants. These include the indirect anticoagulants, unfractionated heparin (UFH), low-molecular-weight heparins (LMWHs), fondaparinux, and danaparoid, as well as the direct thrombin inhibitors hirudin, bivalirudin, and argatroban. UFH is a heterogeneous mixture of glycosaminoglycans that bind to antithrombin via a unique pentasaccharide sequence and catalyze the inactivation of thrombin, factor Xa, and other clotting enzymes. Heparin also binds to cells and plasma proteins other than antithrombin causing unpredictable pharmacokinetic and pharmacodynamic properties and triggering nonhemorrhagic side effects, such as heparin-induced thrombocytopenia (HIT) and osteoporosis. LMWHs have greater inhibitory activity against factor Xa than thrombin and exhibit less binding to cells and plasma proteins than heparin. Consequently, LMWH preparations have more predictable pharmacokinetic and pharmacodynamic properties, have a longer half-life than heparin, and are associated with a lower risk of nonhemorrhagic side effects. LMWHs can be administered once daily or bid by subcutaneous injection, without coagulation monitoring. Based on their greater convenience, LMWHs have replaced UFH for many clinical indications. Fondaparinux, a synthetic pentasaccharide, catalyzes the inhibition of factor Xa, but not thrombin, in an antithrombin-dependent fashion. Fondaparinux binds only to antithrombin. Therefore, fondaparinux-associated HIT or osteoporosis is unlikely to occur. Fondaparinux exhibits complete bioavailability when administered subcutaneously, has a longer half-life than LMWHs, and is given once daily by subcutaneous injection in fixed doses, without coagulation monitoring. Three additional parenteral direct thrombin inhibitors and danaparoid are approved as alternatives to heparin in patients with HIT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939--an oral, direct Factor Xa inhibitor--after multiple dosing in healthy male subjects.

            There is a clinical need for safe new oral anticoagulants. The safety, tolerability, pharmacodynamics, and pharmacokinetics of BAY 59-7939--a novel, oral, direct Factor Xa (FXa) inhibitor--were investigated in this single-center, placebo-controlled, single-blind, parallel-group, multiple-dose escalation study. Healthy male subjects (aged 20-45 years, body mass index 18.6-31.4 kg/m(2)) received oral BAY 59-7939 (n=8 per dose regimen) or placebo (n=4 per dose regimen) on days 0 and 3-7. Dosing regimens were 5 mg once, twice (bid), or three times daily, and 10 mg, 20 mg, or 30 mg bid. There were no clinically relevant changes in bleeding time or other safety variables across all doses and regimens. There was no dose-related increase in the frequency or severity of adverse events with BAY 59-7939. Maximum inhibition of FXa activity occurred after approximately 3 h, and inhibition was maintained for at least 12 h for all doses. Prothrombin time, activated partial thromboplastin time, and HepTest were prolonged to a similar extent to inhibition of FXa activity for all doses. Dose-proportional pharmacokinetics (AUC(tau, norm) and C(max, norm)) were observed at steady state (day 7). Maximum plasma concentrations were achieved after 3-4 h. The terminal half-life of BAY 59-7939 was 5.7-9.2 h at steady state. There was no relevant accumulation at any dose. BAY 59-7939 was safe and well tolerated across the wide dose range studied, with predictable, dose-proportional pharmacokinetics and pharmacodynamics and no relevant accumulation beyond steady state. These results support further investigation of BAY 59-7939 in phase II clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for stroke prevention.

              Rivaroxaban is an oral, direct Factor Xa inhibitor, which is at an advanced stage of clinical development for prevention and treatment of thromboembolic disorders. Two phase II studies, ODIXa-DVT and EINSTEIN DVT, assessed the efficacy and safety of oral rivaroxaban (once daily or twice daily) for treatment of acute deep-vein thrombosis (DVT). Population pharmacokinetic and pharmacodynamic analyses of rivaroxaban in patients in these two phase II studies were conducted to characterize the pharmacokinetics/pharmacodynamics of rivaroxaban and the relationship between important patient covariates and model parameters. Exposure simulations in patients with atrial fibrillation (AF) were also performed in order to predict the exposure of rivaroxaban, using modified demographic data reflecting the characteristics of a typical AF population. A population pharmacokinetic model was developed using plasma samples from these patients. Various simulations were conducted to explore the pharmacokinetics of rivaroxaban in patients with DVT and to predict exposure in those with AF. Correlations between plasma rivaroxaban concentrations and the prothrombin time, Factor Xa activity, HepTest® and activated partial thromboplastin time were also described. The pharmacokinetics of rivaroxaban in patients with DVT were found to be consistent and predictable across all doses studied. The area under the plasma concentration-time curve (AUC) increased dose dependently. The same total daily doses given once daily achieved higher maximum plasma concentration (C(max)) values (∼20%) and lower trough (minimum) plasma concentration (C(trough)) values (∼60%) than when given twice daily; however, the 5th-95th percentile ranges for these parameters overlapped. Rivaroxaban clearance was moderately influenced by age and renal function, and the volume of distribution was influenced by age, body weight and sex; the effects were within the observed interindividual variability. Simulations in virtual patient populations with AF showed that a rivaroxaban dose of 15 mg once daily in patients with creatinine clearance of 30-49 mL/min would achieve AUC and C(max) values similar to those observed with 20 mg once daily in patients with normal renal function. The prothrombin time correlated almost linearly with plasma rivaroxaban concentrations (≤500 μg/L). Population analyses of phase II clinical data indicated that the pharmacokinetics and pharmacodynamics of all rivaroxaban doses were predictable and were affected by expected demographic factors in patients with acute DVT.
                Bookmark

                Author and article information

                Contributors
                Journal
                Thromb J
                Thromb J
                Thrombosis Journal
                BioMed Central
                1477-9560
                2013
                3 July 2013
                : 11
                : 11
                Affiliations
                [1 ]Hôtel-Dieu University Hospital, 1 place du Paris Notre-Dame, Paris 75004, 4ème, Paris, France
                [2 ]Biomnis Laboratories R & D, 78 avenue de Verdun, BP 110,94200 Ivry-sur-Seine, Paris, France
                [3 ]Diagnostica Stago SA, 125 avenue Louis Roche, P.A.E. Parispace 3, 92230 Gennevilliers, France
                [4 ]Bayer HealthCare Pharmaceuticals Inc., PO Box 1000, 07045-1000 Montville, NJ, USA
                [5 ]Bayer HealthCare AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
                Article
                1477-9560-11-11
                10.1186/1477-9560-11-11
                3726412
                23822763
                af91892a-11de-444c-8c6a-1529b1496d94
                Copyright © 2013 Samama et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 March 2013
                : 24 June 2013
                Categories
                Review

                Cardiovascular Medicine
                factor xa,laboratory assessment,rivaroxaban
                Cardiovascular Medicine
                factor xa, laboratory assessment, rivaroxaban

                Comments

                Comment on this article