9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Characterization of TaFUSCA3, a B3-Superfamily Transcription Factor Gene in the Wheat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The end-use quality of wheat, including its unique rheology and viscoelastic properties, is predominantly determined by the composition and concentration of gluten proteins. While, the mechanism regulating expression of the seed storage protein (SSP) genes and other related genes in wheat remains unclear. In this study, we report on the cloning and functional identification of TaFUSCA3, a B3-superfamily transcription factor (TF) gene in wheat. Sequence alignment indicated that wheat and barley FUSCA3 genes are highly conserved. Quantitative reverse-transcription (qRT)-PCR analysis showed that the transcript of TaFUSCA3 was accumulated mostly in the stamens and the endosperms of immature wheat seeds. Yeast-one-hybrid results proved that the full-length TaFUSCA3 and its C-terminal region had transcriptional activities. Yeast-two-hybrid and bimolecular fluorescence complementation assays indicated that TaFUSCA3 could activate the expression of the high molecular weight glutenin subunit gene Glu-1Bx7 and interact with the seed-specific bZIP protein TaSPA. DNA-protein-interaction enzyme-linked immunosorbent assay demonstrated that TaFUSCA3 specifically recognizes the RY-box of the Glu-1Bx7 promoter region. Transient expression results showed that TaFUSCA3 could trans-activate the Glu-1Bx7 promoter, which contains eight RY-box sequences. TaFUSCA3 was unable to activate the downstream transcription when the RY-box was fully mutated. TaFUSCA3 could activate the transcription of the At2S3 gene promoter in a complementation of loss-of-function experiment using the Arabidopsis thaliana line fus3-3, which is a FUSCA3 mutant, demonstrating the evolutionary conservation of the TaFUSCA3 gene. In conclusion, the wheat B3-type TF, TaFUSCA3, is functional conserved between monocot and dicot, and could regulate SSP gene expression by interacting specifically with TaSPA.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Wheat.

          P. Shewry (2009)
          Wheat is the dominant crop in temperate countries being used for human food and livestock feed. Its success depends partly on its adaptability and high yield potential but also on the gluten protein fraction which confers the viscoelastic properties that allow dough to be processed into bread, pasta, noodles, and other food products. Wheat also contributes essential amino acids, minerals, and vitamins, and beneficial phytochemicals and dietary fibre components to the human diet, and these are particularly enriched in whole-grain products. However, wheat products are also known or suggested to be responsible for a number of adverse reactions in humans, including intolerances (notably coeliac disease) and allergies (respiratory and food). Current and future concerns include sustaining wheat production and quality with reduced inputs of agrochemicals and developing lines with enhanced quality for specific end-uses, notably for biofuels and human nutrition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis.

            Seeds represent the main source of nutrients for animals and humans, and knowledge of their biology provides tools for improving agricultural practices and managing genetic resources. There is also tremendous interest in using seeds as a sustainable alternative to fossil reserves for green chemistry. Seeds accumulate large amounts of storage compounds such as carbohydrates, proteins and oils. It would be useful for agro-industrial purposes to produce seeds that accumulate these storage compounds more specifically and at higher levels. The main metabolic pathways necessary for oil, starch or protein accumulation are well characterized. However, the overall regulation of partitioning between the various pathways remains unclear. Such knowledge could provide new molecular tools for improving the qualities of crop seeds (Focks and Benning, 1998, Plant Physiol. 118, 91). Studies to improve understanding of the genetic controls of seed development and metabolism therefore remain a key area of research. In the model plant Arabidopsis, genetic analyses have demonstrated that LEAFY COTYLEDON genes, namely LEC1, LEC2 and FUSCA3 (FUS3), are key transcriptional regulators of seed maturation, together with ABSCISIC ACID INSENSITIVE 3 (ABI3). Interestingly, LEC2, FUS3 and ABI3 are related proteins that all contain a 'B3' DNA-binding domain. In recent years, genetic and molecular studies have shed new light on the intricate regulatory network involving these regulators and their interactions with other factors such as LEC1, PICKLE, ABI5 or WRI1, as well as with sugar and hormonal signaling. Here, we summarize the most recent advances in our understanding of this complex regulatory network and its role in the control of seed maturation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid.

              Although plants continually produce different organs throughout their life cycle, little is known about the factors that regulate the timing of a given developmental program. Here we report that the restricted expression of FUS3 to the epidermis is sufficient to control foliar organ identity in Arabidopsis by regulating the synthesis of two hormones, abscisic acid and gibberellin. These hormones in turn regulate the rates of cell cycling during organ formation to determine whether an embryonic or adult leaf will emerge. We also show that FUS3 expression is influenced by the patterning hormone, auxin, and therefore acts as a nexus of hormone action during embryogenesis. The identification of lipophillic hormones downstream of a heterochronic regulator in Arabidopsis has parallels to mechanisms of developmental timing in animals and suggests a common logic for temporal control of developmental programs between these two kingdoms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                28 June 2017
                2017
                : 8
                : 1133
                Affiliations
                The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China
                Author notes

                Edited by: Chengdao Li, Murdoch University, Australia

                Reviewed by: Karl Kunert, University of Pretoria, South Africa; Chuang Ma, Northwest A&F University, China

                *Correspondence: Guangyuan He, hegy@ 123456hust.edu.cn Guangxiao Yang, ygx@ 123456hust.edu.cn

                These authors have contributed equally to this work.

                This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01133
                5487486
                28702045
                af9d9630-6d7a-4d63-a4b0-11f6f4f41817
                Copyright © 2017 Sun, Liu, Wei, Liu, Yang, Jia, Wang, Yang and He.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 March 2017
                : 13 June 2017
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 56, Pages: 14, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                tafusca3,taspa,seed storage protein,complementation of the loss-of-function,wheat

                Comments

                Comment on this article