13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          Transcriptional analysis (mRNA and small RNA) of rice flower organs demonstrates correlations of 24-nt phased small RNAs with anther maturation and with three small RNA-binding Argonautes.

          Abstract

          Dissection of the genetic pathways and mechanisms by which anther development occurs in grasses is crucial for both a basic understanding of plant development and for examining traits of agronomic importance such as male sterility. In rice, MULTIPLE SPOROCYTES1 (MSP1), a leucine-rich-repeat receptor kinase, plays an important role in anther development by limiting the number of sporocytes. OsTDL1a (a TPD1-like gene in rice) encodes a small protein that acts as a cofactor of MSP1 in the same regulatory pathway. In this study, we analyzed small RNA and mRNA changes in different stages of spikelets from wild-type rice, and from msp1 and ostdl1a mutants. Analysis of the small RNA data identified miRNAs demonstrating differential abundances. miR2275 was depleted in the two rice mutants; this miRNA is specifically enriched in anthers and functions to trigger the production of 24-nt phased secondary siRNAs (phasiRNAs) from PHAS loci. We observed that the 24-nt phasiRNAs as well as their precursor PHAS mRNAs were also depleted in the two mutants. An analysis of co-expression identified three Argonaute-encoding genes ( OsAGO1d, OsAGO2b, and OsAGO18) that accumulate transcripts coordinately with phasiRNAs, suggesting a functional relationship. By mRNA in situ analysis, we demonstrated a strong correlation between the spatiotemporal pattern of these OsAGO transcripts and phasiRNA accumulations.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development.

          X. Chen (2004)
          Plant microRNAs (miRNAs) show a high degree of sequence complementarity to, and are believed to guide the cleavage of, their target messenger RNAs. Here, I show that miRNA172, which can base-pair with the messenger RNA of a floral homeotic gene, APETALA2, regulates APETALA2 expression primarily through translational inhibition. Elevated miRNA172 accumulation results in floral organ identity defects similar to those in loss-of-function apetala2 mutants. Elevated levels of mutant APETALA2 RNA with disrupted miRNA172 base pairing, but not wild-type APETALA2 RNA, result in elevated levels of APETALA2 protein and severe floral patterning defects. Therefore, miRNA172 likely acts in cell-fate specification as a translational repressor of APETALA2 in Arabidopsis flower development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs.

            Legumes and many nonleguminous plants enter symbiotic interactions with microbes, and it is poorly understood how host plants respond to promote beneficial, symbiotic microbial interactions while suppressing those that are deleterious or pathogenic. Trans-acting siRNAs (tasiRNAs) negatively regulate target transcripts and are characterized by siRNAs spaced in 21-nucleotide (nt) "phased" intervals, a pattern formed by DICER-LIKE 4 (DCL4) processing. A search for phased siRNAs (phasiRNAs) found at least 114 Medicago loci, the majority of which were defense-related NB-LRR-encoding genes. We identified three highly abundant 22-nt microRNA (miRNA) families that target conserved domains in these NB-LRRs and trigger the production of trans-acting siRNAs. High levels of small RNAs were matched to >60% of all ∼540 encoded Medicago NB-LRRs; in the potato, a model for mycorrhizal interactions, phasiRNAs were also produced from NB-LRRs. DCL2 and SGS3 transcripts were also cleaved by these 22-nt miRNAs, generating phasiRNAs, suggesting synchronization between silencing and pathogen defense pathways. In addition, a new example of apparent "two-hit" phasiRNA processing was identified. Our data reveal complex tasiRNA-based regulation of NB-LRRs that potentially evolved to facilitate symbiotic interactions and demonstrate miRNAs as master regulators of a large gene family via the targeting of highly conserved, protein-coding motifs, a new paradigm for miRNA function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice.

              Transcription factors play essential roles in the developmental processes of plants. Many such factors are regulated by microRNAs (miRNAs). SQUAMOSA (SQUA) promoter-binding-like (SPL) genes encode plant-specific transcription factors, some of which contain complementary sequences of miRNA156. In this study, 19 rice (Oryza sativa) SPL (OsSPL) genes and 12 rice miRNA156 (OsmiR156) precursors were identified in the rice genome. Sequence and experimental analysis suggested that 11 OsSPL genes were putative targets of OsmiR156. Plant SPL proteins were classified into six subgroups based on the phylogenetic analysis of SQUA promoter-binding protein domain. Diverse exon-intron structures and distinct organizations of putative motifs beyond the SQUA promoter-binding protein domains were identified in the OsSPL gene family. Transcript level analysis of OsSPL genes in various rice tissues and organs revealed different tempospatial expression patterns. More than half of the OsSPL genes including most OsmiR156-targeted genes are predominantly expressed in the young panicles, whereas OsmiR156 genes are predominantly expressed in the young shoots and leaves of rice. Overexpression of two OsmiR156 genes (OsmiR156b and OsmiR156h) in rice resulted in severe dwarfism, strongly reduced panicle size, and delayed flowering, suggesting that OsmiR156 and OsSPL target genes are involved in various developmental processes, especially the flower development of rice. Different patterns of transcript changes (decreased or unchanged) of different target genes in same tissue and of same target gene in different tissues detected in the OsmiR156-overexpressing plants suggested diverse interactions between OsmiR156 and OsSPL target genes in a tissue-specific manner.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                November 2016
                4 October 2016
                4 October 2016
                : 67
                : 21
                : 6037-6049
                Affiliations
                1Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware , Newark, DE 19711, USA
                2State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
                3School of Agriculture, Food and Wine, University of Adelaide , South Australia 5064, Australia
                4Donald Danforth Plant Science Center , 975 North Warson Road, St. Louis, MO 63132, USA
                5University of Missouri – Columbia, Division of Plant Sciences , 52 Agriculture Lab, Columbia, MO 65211, USA
                Author notes
                These authors contributed equally to this work.

                Editor: Zoe Wilson, University of Nottingham

                Author information
                http://orcid.org/0000-0003-3436-6097
                Article
                10.1093/jxb/erw361
                5100018
                27702997
                aff6c044-ecc4-452d-89c8-f2408a4c7e8f
                © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Funding
                Funded by: National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809;
                Award ID: 31430009
                Award ID: 31110103915
                Award ID: 32322040
                Award ID: 31271698
                Funded by: Science and Technology Commission of Shanghai Municipality, http://dx.doi.org/10.13039/501100003399;
                Award ID: 13JC1408200
                Categories
                Research Paper

                Plant science & Botany
                anther,argonaute,microrna,phasirna,rice,spikelet.
                Plant science & Botany
                anther, argonaute, microrna, phasirna, rice, spikelet.

                Comments

                Comment on this article