34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds.

          Principal Findings

          We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring.

          Conclusions

          The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.

          Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA-binding protein Dnd1 inhibits microRNA access to target mRNA.

            MicroRNAs (miRNAs) are inhibitors of gene expression capable of controlling processes in normal development and cancer. In mammals, miRNAs use a seed sequence of 6-8 nucleotides (nt) to associate with 3' untranslated regions (3'UTRs) of mRNAs and inhibit their expression. Intriguingly, occasionally not only the miRNA-targeting site but also sequences in its vicinity are highly conserved throughout evolution. We therefore hypothesized that conserved regions in mRNAs may serve as docking platforms for modulators of miRNA activity. Here we demonstrate that the expression of dead end 1 (Dnd1), an evolutionary conserved RNA-binding protein (RBP), counteracts the function of several miRNAs in human cells and in primordial germ cells of zebrafish by binding mRNAs and prohibiting miRNAs from associating with their target sites. These effects of Dnd1 are mediated through uridine-rich regions present in the miRNA-targeted mRNAs. Thus, our data unravel a novel role of Dnd1 in protecting certain mRNAs from miRNA-mediated repression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.

              Steel factor (SF) and LIF (leukemia inhibitory factor) synergistically promote the proliferation and survival of mouse primordial germ cells (PGCs), but only for a limited time period in culture. We show here that addition of bFGF to cultures in the presence of membrane-associated SF and LIF enhances the growth of PGCs and allows their continued proliferation beyond the time when they normally stop dividing in vivo. They form colonies of densely packed, alkaline phosphatase-positive, SSEA-1-positive cells resembling undifferentiated embryonic stem (ES) cells in morphology. These cultures can be maintained on feeder layers for at least 20 passages, and under appropriate conditions give rise to embryoid bodies and to multiple differentiated cell phenotypes in monolayer culture and in tumors in nude mice. PGC-derived ES cells can also contribute to chimeras when injected into host blastocysts. The long-term culture of PGCs and their reprogramming to pluripotential ES cells has important implications for germ cell biology and the induction of teratocarcinomas.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                29 November 2010
                : 5
                : 11
                : e15518
                Affiliations
                [1]The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
                Brigham and Women's Hospital, United States of America
                Author notes

                Conceived and designed the experiments: JM JDG HMS MJM. Performed the experiments: JM LT JDG MJM. Analyzed the data: JM JDG HMS LT MJM. Contributed reagents/materials/analysis tools: MJM. Wrote the paper: JM JDG HMS MJM.

                Article
                PONE-D-10-00370
                10.1371/journal.pone.0015518
                2993963
                21124737
                b00d6ad7-1c23-4d64-b967-52f3d8f688b3
                Macdonald et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 August 2010
                : 11 October 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Agriculture
                Agricultural Biotechnology
                Genetically Modified Organisms
                Animal Management
                Transgenic Animals
                Biology
                Anatomy and Physiology
                Reproductive System
                Sexual Reproduction
                Biochemistry
                Proteins
                Luminescent Proteins
                Developmental Biology
                Morphogenesis
                Sexual Differentiation
                Stem Cells
                Adult Stem Cells
                Embryonic Stem Cells
                Induced Pluripotent Stem Cells
                Embryology
                Model Organisms
                Animal Models
                Chicken
                Molecular Cell Biology
                Cellular Types
                Germ Cells
                Signal Transduction
                Signaling Cascades
                Akt Signaling Cascade
                ERK signaling cascade
                MAPK signaling cascades
                Polyphosphoinositide Signaling Cascade

                Uncategorized
                Uncategorized

                Comments

                Comment on this article