4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Defense Against Biological Weapons (Biodefense)

      chapter-article
      , PhD
      , PhD
      National Institute of Allergy and Infectious Diseases, NIH

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological warfare (germ warfare) is defined as the use of any disease-causing organism or toxin(s) found in nature as weapons of war with the intent to destroy an adversary. Though rare, the use of biological weapons has occurred throughout the centuries.

          Related collections

          Most cited references474

          • Record: found
          • Abstract: found
          • Article: not found

          Antiviral actions of interferons.

          C Samuel (2001)
          Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Yersinia pestis--etiologic agent of plague.

            Plague is a widespread zoonotic disease that is caused by Yersinia pestis and has had devastating effects on the human population throughout history. Disappearance of the disease is unlikely due to the wide range of mammalian hosts and their attendant fleas. The flea/rodent life cycle of Y. pestis, a gram-negative obligate pathogen, exposes it to very different environmental conditions and has resulted in some novel traits facilitating transmission and infection. Studies characterizing virulence determinants of Y. pestis have identified novel mechanisms for overcoming host defenses. Regulatory systems controlling the expression of some of these virulence factors have proven quite complex. These areas of research have provide new insights into the host-parasite relationship. This review will update our present understanding of the history, etiology, epidemiology, clinical aspects, and public health issues of plague.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deletional bias and the evolution of bacterial genomes.

              Although bacteria increase their DNA content through horizontal transfer and gene duplication, their genomes remain small and, in particular, lack nonfunctional sequences. This pattern is most readily explained by a pervasive bias towards higher numbers of deletions than insertions. When selection is not strong enough to maintain them, genes are lost in large deletions or inactivated and subsequently eroded. Gene inactivation and loss are particularly apparent in obligate parasites and symbionts, in which dramatic reductions in genome size can result not from selection to lose DNA, but from decreased selection to maintain gene functionality. Here we discuss the evidence showing that deletional bias is a major force that shapes bacterial genomes.
                Bookmark

                Author and article information

                Contributors
                vgeorgiev@niaid.nih.gov
                vgeorgiev@niaid.nih.gov
                Journal
                978-1-60327-297-1
                10.1007/978-1-60327-297-1
                National Institute of Allergy and Infectious Diseases, NIH
                National Institute of Allergy and Infectious Diseases, NIH
                Volume 2;Impact on Global Health
                978-1-60327-296-4
                978-1-60327-297-1
                2009
                : 221-305
                Affiliations
                GRID grid.94365.3d, ISNI 0000000122975165, Department of Health & Human Services, , National Institutes of Health, ; 6610 Rockledge Drive, Bethesda, MD 20892 USA
                GRID grid.94365.3d, ISNI 0000000122975165, Department of Health & Human Services, , National Institutes of Health, ; 6610 Rockledge Drive, Bethesda, USA
                Article
                23
                10.1007/978-1-60327-297-1_23
                7122899
                b00d8068-841c-497a-8997-498d163956c7
                © Humana Press, a part of Springer Science+Business Media, LLC 2009

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Categories
                Article
                Custom metadata
                © Humana Press 2009

                Comments

                Comment on this article