8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of FDA-Approved Anti-Inflammatory Drugs Against Venezuelan Equine Encephalitis Virus Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Venezuelan equine encephalitis virus (VEEV) is a category B select agent pathogen that can be aerosolized. Infections in murine models and humans can advance to an encephalitic phenotype which may result in long-term neurological complications or death. No specific FDA-approved treatments or vaccines are available for the treatment or prevention of VEEV infection. Neurotropic viral infections have two damaging components: neuronal death caused by viral replication, and damage from the subsequent inflammatory response. Reducing the level of inflammation may lessen neurological tissue damage that often arises following VEEV infection. In this study, three commercially available anti-inflammatory drugs, Celecoxib, Rolipram, and Tofacitinib, were evaluated for antiviral activity in an astrocyte and a microglial model of VEEV infection. The inhibitors were tested against the vaccine strain VEEV TC-83, as well as the wild-type VEEV Trinidad donkey strain. Celecoxib, Tofacitinib, and Rolipram significantly decreased viral titers both after pre-treatment and post-treatment of infected cells. VEEV Trinidad Donkey (TrD) titers were reduced 6.45-fold in cells treated with 50 µM of Celecoxib, 2.45-fold when treated with 50 µM of Tofacitinib, and 1.81-fold when treated with 50 µM of Rolipram. Celecoxib was also shown to decrease inflammatory gene expression in the context of TC-83 infection. Overall, Celecoxib demonstrated potency as a countermeasure strategy that slowed VEEV infection and infection-induced inflammation in an in vitro model.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease

          The blood–brain barrier (BBB) is a tightly regulated interface in the Central Nervous System (CNS) that regulates the exchange of molecules in and out from the brain thus maintaining the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes are essential for the formation and maintenance of the BBB by providing secreted factors that lead to the adequate association between the cells of the BBB and the formation of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia, brain trauma, Epilepsy, Alzheimer and Parkinson’s Diseases, a disruption of the BBB takes place, involving a lost in the permeability of the barrier and phenotypical changes in both the ECs and astrocytes. In this aspect, it has been established that the process of reactive gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental effect on the barrier function and a subsequent damage in neuronal survival. In this review we discuss the implications of astrocyte functions in the protection of the BBB, and in the development of Parkinson’s disease (PD) and related disorders. Additionally, we highlight the current and future strategies in astrocyte protection aimed at the development of restorative therapies for the BBB in pathological conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases

            Phosphodiesterase-4 (PDE4), mainly present in immune cells, epithelial cells, and brain cells, manifests as an intracellular non-receptor enzyme that modulates inflammation and epithelial integrity. Inhibition of PDE4 is predicted to have diverse effects via the elevation of the level of cyclic adenosine monophosphate (cAMP) and the subsequent regulation of a wide array of genes and proteins. It has been identified that PDE4 is a promising therapeutic target for the treatment of diverse pulmonary, dermatological, and severe neurological diseases. Over the past decades, numerous PDE4 inhibitors have been designed and synthesized, among which roflumilast, apremilast, and crisaborole were approved for the treatment of inflammatory airway diseases, psoriatic arthritis, and atopic dermatitis, respectively. It is regrettable that the dramatic efficacies of a drug are often accompanied by adverse effects, such as nausea, emesis, and gastrointestinal reactions. However, substantial advances have been made to mitigate the adverse effects and obtain better benefit-to-risk ratio. This review highlights the dialectical role of PDE4 in drug discovery and the disquisitive details of certain PDE4 inhibitors to provide an overview of the topics that still need to be addressed in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor.

              Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin, ketoconazole or methotrexate; however, clinically significant drug interactions with fluconazole and lithium have been documented. As celecoxib is metabolised by CYP2C9, increased clinical vigilance is required during the coadministration of other substrates or inhibitors of this enzyme.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                12 December 2019
                December 2019
                : 11
                : 12
                : 1151
                Affiliations
                National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA; krisner@ 123456masonlive.gmu.edu (K.R.); aahmed30@ 123456masonlive.gmu.edu (A.A.); abakovic@ 123456masonlive.gmu.edu (A.B.); skortcha@ 123456masonlive.gmu.edu (S.K.); nbhalla@ 123456gmu.edu (N.B.)
                Author notes
                [* ]Correspondence: anaraya1@ 123456gmu.edu ; Tel.: +1-703-993-9610
                Author information
                https://orcid.org/0000-0001-6999-7564
                Article
                viruses-11-01151
                10.3390/v11121151
                6950191
                31842327
                b028169d-f64f-40c0-b68b-24634580fd30
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 October 2019
                : 10 December 2019
                Categories
                Article

                Microbiology & Virology
                venezuelan equine encephalitis virus,inflammation,fda approved anti-inflammatory compounds,antiviral efficacy,inhibition

                Comments

                Comment on this article