1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of high-voltage electrostatic field treatment on the thawing rate and post-thawing quality of frozen rabbit meat

      , , ,
      Innovative Food Science & Emerging Technologies
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes.

          Unacceptable water-holding capacity costs the meat industry millions of dollars annually. However, limited progress has been made toward understanding the mechanisms that underlie the development of drip or purge. It is clear that early postmortem events including rate and extent of pH decline, proteolysis and even protein oxidation are key in influencing the ability of meat to retain moisture. Much of the water in the muscle is entrapped in structures of the cell, including the intra- and extramyofibrillar spaces; therefore, key changes in the intracellular architecture of the cell influence the ability of muscle cells to retain water. As rigor progresses, the space for water to be held in the myofibrils is reduced and fluid can be forced into the extramyofibrillar spaces where it is more easily lost as drip. Lateral shrinkage of the myofibrils occurring during rigor can be transmitted to the entire cell if proteins that link myofibrils together and myofibrils to the cell membrane (such as desmin) are not degraded. Limited degradation of cytoskeletal proteins may result in increased shrinking of the overall muscle cell, which is ultimately translated into drip loss. Recent evidence suggests that degradation of key cytoskeletal proteins by calpain proteinases has a role to play in determining water-holding capacity. This review will focus on key events in muscle that influence structural changes that are associated with water-holding capacity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current research in meat color.

            This review surveyed recent literature focused on factors that affect myoglobin chemistry, meat color, pigment redox stability, and methodology used to evaluate these properties. The appearance of meat and meat products is a complex topic involving animal genetics, ante- and postmortem conditions, fundamental muscle chemistry, and many factors related to meat processing, packaging, distribution, storage, display, and final preparation for consumption. These factors vary globally, but the variables that affect basic pigment chemistry are reasonably consistent between countries. Essential for maximizing meat color life is an understanding of the combined effects of two fundamental muscle traits, oxygen consumption and metmyoglobin reduction. In the antemortem sector of research, meat color is being related to genomic quantitative loci, numerous pre-harvest nutritional regimens, and housing and harvest environment. Our knowledge of postmortem chilling and pH effects, atmospheres used for packaging, antimicrobial interventions, and quality and safety of cooked color are now more clearly defined. The etiology of bone discoloration is now available. New color measurement methodology, especially digital imaging techniques, and improved modifications to existing methodology are now available. Nevertheless, unanswered questions regarding meat color remain. Meat scientists should continue to develop novel ways of improving muscle color and color stability while also focusing on the basic principles of myoglobin chemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of freezing and thawing on the quality of meat: review.

              This comprehensive review describes the effects of freezing and thawing on the physical quality parameters of meat. The formation of ice crystals during freezing damages the ultrastructure and concentrates the solutes in the meat which, in turn, leads to alterations in the biochemical reactions that occur at the cellular level and influence the physical quality parameters of the meat. The quality parameters that were evaluated are moisture loss, protein denaturation, lipid and protein oxidation, colour, pH, shear force and microbial spoilage. Additionally mechanisms employed to mitigate the effects of freezing and thawing were also reviewed. These include the use of novel methods of freezing and thawing, ante and post mortem antifreeze protein inclusion and vitamin E supplementation, brine injection and modified atmospheric packaging.
                Bookmark

                Author and article information

                Journal
                Innovative Food Science & Emerging Technologies
                Innovative Food Science & Emerging Technologies
                Elsevier BV
                14668564
                June 2017
                June 2017
                : 41
                : 348-356
                Article
                10.1016/j.ifset.2017.04.011
                b035da50-1c31-4a46-9002-ff4f2aaeef53
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article