5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lead halide perovskites belong to a broad class of compounds with appealing optoelectronic and photovoltaic properties.

          Abstract

          Lead halide perovskites belong to a broad class of compounds with appealing optoelectronic and photovoltaic properties. Doping with transition metal ions such as Mn 2+ and Co 2+ has recently been reported to substantially enhance luminescence and stability of these materials. However, so far atomic-level evidence for incorporation of the dopants into perovskite phases has been missing. Here, we introduce a general and straightforward method for confirming the substitutional doping of bulk perovskite phases with paramagnetic dopants. Using 133Cs and 1H solid-state MAS NMR relaxation measurements we provide for the first time direct evidence that, consistent with current understanding, Mn 2+ is incorporated into the perovskite lattice of CsPbCl 3 and CsPbBr 3 and does not form clusters. We also show that, contrary to current conviction, Co 2+ is not incorporated into the perovskite lattice of MAPbI 3.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)

          Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature, deliberately partial, or complete anion-exchange in highly luminescent semiconductor nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). By adjusting the halide ratios in the colloidal nanocrystal solution, the bright photoluminescence can be tuned over the entire visible spectral region (410–700 nm) while maintaining high quantum yields of 20–80% and narrow emission line widths of 10–40 nm (from blue to red). Furthermore, fast internanocrystal anion-exchange is demonstrated, leading to uniform CsPb(Cl/Br)3 or CsPb(Br/I)3 compositions simply by mixing CsPbCl3, CsPbBr3, and CsPbI3 nanocrystals in appropriate ratios.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions

            We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature.

              Colloidal nanocrystals of fully inorganic cesium lead halide (CsPbX3, X = Cl, Br, I, or combinations thereof) perovskites have attracted much attention for photonic and optoelectronic applications. Herein, we demonstrate a facile room-temperature (e.g., 25 °C), ligand-mediated reprecipitation strategy for systematically manipulating the shape of CsPbX3 colloidal nanocrystals, such as spherical quantum dots, nanocubes, nanorods, and nanoplatelets. The colloidal spherical quantum dots of CsPbX3 were synthesized with photoluminescence (PL) quantum yield values up to >80%, and the corresponding PL emission peaks covering the visible range from 380 to 693 nm. Besides spherical quantum dots, the shape of CsPbX3 nanocrystals could be engineered into nanocubes, one-dimensional nanorods, and two-dimensional few-unit-cell-thick nanoplatelets with well-defined morphology by choosing different organic acid and amine ligands via the reprecipitation process. The shape-dependent PL decay lifetimes have been determined to be several to tens to hundreds of nanoseconds. Our method provides a facile and versatile route to rationally control the shape of the CsPbX3 perovskites nanocrystals, which will create opportunities for applications such as displays, lasing, light-emitting diodes, solar concentrators, and photon detection.
                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                January 29 2019
                2019
                : 7
                : 5
                : 2326-2333
                Affiliations
                [1 ]Laboratory of Magnetic Resonance
                [2 ]Institute of Chemical Sciences and Engineering
                [3 ]Ecole Polytechnique Fédérale de Lausanne (EPFL)
                [4 ]CH-1015 Lausanne
                [5 ]Switzerland
                [6 ]Laboratory of Photonics and Interfaces
                Article
                10.1039/C8TA11457A
                b049817c-49df-4745-8812-d60423d6dcda
                © 2019

                http://creativecommons.org/licenses/by-nc/3.0/

                History

                Comments

                Comment on this article