33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring structural inhomogeneities in glasses during cavitation

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using large-scale molecular dynamics simulations for a system of \(10^6\) particles, the response of a dense amorphous solid to the continuous expansion of its volume is investigated. We find that the spatially uniform glassy state becomes unstable via the formation of cavities, which eventually leads to failure. By scanning through a wide range of densities and temperatures, we determine the state points at which the instability occurs and thereby provide estimates of the co-existence density of the resultant glass phase. Evidence for long-lived, inhomogeneous configurations with a negative pressure is found, where the frozen-in glass structure contains spherical cavities or a network of void space. Furthermore, we demonstrate the occurrence of hysteretic effects when the cavitated solid is compressed to regain the dense glassy state. As a result, a new glass state is obtained, the pressure of which is different from the initial one due to small density inhomogeneities that are generated by the dilation-compression cycle.

          Related collections

          Author and article information

          Journal
          1509.03158

          Condensed matter
          Condensed matter

          Comments

          Comment on this article