13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perilipin 1 moves between the fat droplet and the endoplasmic reticulum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perilipin 1, unlike the other perilipins, is thought to be restricted to the fat droplet. We reassessed its cellular distribution using the fat droplet marker CGI-58 in OP9 and 3T3-L1 adipocyte lines and in brown adipose tissue (BAT). As expected, we found perilipin 1 in the fat droplet-enriched floating fraction from centrifuged adipocyte or BAT homogenates. However, about half of perilipin 1 was suspended in the cytosol/infranate or pelleted with cellular membranes. In these fractionations, most of the fat droplet-associated protein CGI-58 was in the floating fraction. In BAT and OP9 adipocytes about a third of perilipin 1 pellets, compared with a much smaller fraction of CGI-58. Co-imaging perilipin 1 and smooth endoplasmic reticulum (ER) markers reveals both ER and fat droplet associated perilipin 1 in OP9 adipocytes. Consistent with these observations, perilipin 1 overexpressed in COS7 cells mostly fractionates with cellular membranes and imaging shows it on the ER. In 3T3-L1 adipocytes almost half of perilipin 1 floats, half is suspended as infranate and small amounts pellet. Finally, driving rapid fat droplet synthesis in OP9 adipocytes increases the intensity of perilipin 1 on fat droplets, while decreasing non-fat droplet immunolabeling. Confirming the morphological findings, fractionation shows perilipin 1 moving from the pelleted to the floated fractions. In conclusion, this study documents an expanded intracellular distribution for perilipin 1 and its movement from ER to fat droplet during lipid synthesis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis.

          The majority of eukaryotic cells synthesize neutral lipids and package them into cytosolic lipid droplets. In vertebrates, triacylglycerol-rich lipid droplets of adipocytes provide a major energy storage depot for the body, whereas cholesteryl ester-rich droplets of many other cells provide building materials for local membrane synthesis and repair. These lipid droplets are coated with one or more of five members of the perilipin family of proteins: adipophilin, TIP47, OXPAT/MLDP, S3-12, and perilipin. Members of this family share varying levels of sequence similarity, lipid droplet association, and functions in stabilizing lipid droplets. The most highly studied member of the family, perilipin, is the most abundant protein on the surfaces of adipocyte lipid droplets, and the major substrate for cAMP-dependent protein kinase [protein kinase A (PKA)] in lipolytically stimulated adipocytes. Perilipin serves important functions in the regulation of basal and hormonally stimulated lipolysis. Under basal conditions, perilipin restricts the access of cytosolic lipases to lipid droplets and thus promotes triacylglycerol storage. In times of energy deficit, perilipin is phosphorylated by PKA and facilitates maximal lipolysis by hormone-sensitive lipase and adipose triglyceride lipase. A model is discussed whereby perilipin serves as a dynamic scaffold to coordinate the access of enzymes to the lipid droplet in a manner that is responsive to the metabolic status of the adipocyte.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes.

            Adipocytes hold the body's major energy reserve as triacylglycerols packaged in large lipid droplets. Perilipins, the most abundant proteins on these lipid droplets, play a critical role in facilitating both triacylglycerol storage and hydrolysis. The stimulation of lipolysis by beta-adrenergic agonists triggers rapid phosphorylation of perilipin and translocation of hormone-sensitive lipase to the surfaces of lipid droplets and more gradual fragmentation and dispersion of micro-lipid droplets. Because few lipid droplet-associated proteins have been identified in adipocytes, we isolated lipid droplets from basal and lipolytically stimulated 3T3-L1 adipocytes and identified the component proteins by mass spectrometry. Structural proteins identified in both preparations include perilipin, S3-12, vimentin, and TIP47; in contrast, adipophilin, caveolin-1, and tubulin selectively localized to droplets in lipolytically stimulated cells. Lipid metabolic enzymes identified in both preparations include hormone-sensitive lipase, lanosterol synthase, NAD(P)-dependent steroid dehydrogenase-like protein, acyl-CoA synthetase, long chain family member (ACSL) 1, and CGI-58. 17-beta-Hydroxysteroid dehydrogenase, type 7, was identified only in basal preparations, whereas ACSL3 and 4 and two short-chain reductase/dehydrogenases were identified on droplets from lipolytically stimulated cells. Additionally, both preparations contained FSP27, ribophorin I, EHD2, diaphorase I, and ancient ubiquitous protein. Basal preparations contained CGI-49, whereas lipid droplets from lipolytically stimulated cells contained several Rab GTPases and tumor protein D54. A close association of mitochondria with lipid droplets was suggested by the identification of pyruvate carboxylase, prohibitin, and a subunit of ATP synthase in the preparations. Thus, adipocyte lipid droplets contain specific structural proteins as well as lipid metabolic enzymes; the structural reorganization of lipid droplets in response to the hormonal stimulation of lipolysis is accompanied by increases in the relative mass of several proteins and the recruitment of additional proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria.

              Maintaining cellular lipid homeostasis is crucial to oxidative tissues, and it becomes compromised in obesity. Lipid droplets (LD) play a central role in lipid homeostasis by mediating fatty acid (FA) storage in the form of triglyceride, thereby lowering intracellular levels of lipids that mediate cellular lipotoxicity. LDs and mitochondria have interconnected functions, and anecdotal evidence suggests they physically interact. However, the mechanisms of interaction have not been identified. Perilipins are LD-scaffolding proteins and potential candidates to play a role in their interaction with mitochondria. We examined the contribution of LD perilipin composition to the physical and metabolic interactions between LD and mitochondria using multiple techniques: confocal imaging, electron microscopy (EM), and lipid storage and utilization measurements. Using neonatal cardiomyocytes, reconstituted cell culture models, and rodent heart tissues, we found that perilipin 5 (Plin5) recruits mitochondria to the LD surface through a C-terminal region. Compared with control cells, Plin5-expressing cells show decreased LD hydrolysis, decreased palmitate β-oxidation, and increased palmitate incorporation into triglycerides in basal conditions, whereas in stimulated conditions, LD hydrolysis inhibition is lifted and FA released for β-oxidation. These results suggest that Plin5 regulates oxidative LD hydrolysis and controls local FA flux to protect mitochondria against excessive exposure to FA during physiological stress.
                Bookmark

                Author and article information

                Journal
                Adipocyte
                Adipocyte
                ADIP
                Adipocyte
                Landes Bioscience
                2162-3945
                2162-397X
                01 April 2013
                01 April 2013
                01 April 2013
                : 2
                : 2
                : 80-86
                Affiliations
                [1 ]Center for Human Nutrition; Washington University School of Medicine; St. Louis, MO USA
                [2 ]Cell Biology and Physiology; Washington University School of Medicine; St. Louis, MO USA
                Author notes
                [* ]Correspondence to: Nathan E. Wolins; Email: nwolins@ 123456wustl.edu
                Article
                2012ADIPOCYTE085R 22864
                10.4161/adip.22864
                3661117
                23805403
                b09712ff-2977-44af-8e94-46a511f8b127
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 18 September 2012
                : 08 November 2012
                : 09 November 2012
                Categories
                Research Paper

                lipid droplets,diacylglycerol,3t3-l1,fractionation,op9,brown fat,cgi-58

                Comments

                Comment on this article