12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Epigenetic silencing of Bcl-2, CEBPA and p14(ARF) by the AML1-ETO oncoprotein contributing to growth arrest and differentiation block in the U937 cell line.

      1 , , ,
      Oncology reports
      Spandidos Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The AML1-ETO fusion transcription factor generated by the t(8;21) translocation is considered to deregulate the expression of genes that are crucial for normal differentiation and proliferation of hematopoietic progenitors, resulting in acute myelogenous leukemia by recruiting co-repressor complexes to DNA. To investigate the role of AML1-ETO in leukemogenesis, we transfected the cloned AML1-ETO cDNA and expressed the AML1-ETO protein in U937 myelomonocytic leukemia cells. By focusing on the anti-apoptotic gene Bcl-2, the key regulator gene of granulocytic differentiation CCAAT/enhancer-binding protein α (CEBPA) and the tumor suppressor gene p14(ARF), we found that both AML1-ETO-expressing cell lines and t(8;21) leukemia samples displayed low levels of these three genes. Chromatin immunoprecipitation assays demonstrated that Bcl-2, CEBPA and p14(ARF) were direct transcriptional targets of AML1-ETO. The universal binding of AML1-ETO to genomic DNA resulted in recruitment of methyl-CpG binding protein 2 (MeCP2), reduction of histone H3 or H4 acetylation and increased trimethylation of histone H3 lysine 9 as well as lysine 27 indicating that AML1-ETO induced heterochromatic silencing of Bcl-2, CEBPA and p14(ARF). These results suggested that the aberrant transcription factor AML1-ETO epigenetically silenced the function of the Bcl-2, CEBPA and p14(ARF) genes by inducing repressed chromatin configurations at their promoters through histone modifications.

          Related collections

          Author and article information

          Journal
          Oncol. Rep.
          Oncology reports
          Spandidos Publications
          1791-2431
          1021-335X
          Jul 2013
          : 30
          : 1
          Affiliations
          [1 ] The First Affiliated Hospital, Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, Jiangsu, P.R. China.
          Article
          10.3892/or.2013.2459
          23673926
          b0a7d92d-4a80-4d9e-94b9-7e164c545021
          History

          Comments

          Comment on this article