96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens.

          Author Summary

          The treatment of serious infections caused by Staphylococcus aureus is complicated by the development of antibiotic resistance, and in some cases the appearance of more persistent bacteria that have a reduced growth rate resulting in small colony variants (SCV). Here we have shown using whole genome sequencing and gene replacement experiments on sequential S. aureus isolates obtained from a patient with a serious bloodstream infection, how S. aureus evolved into a multi-antibiotic resistant, persistent and almost untreatable SCV. Specifically we show that a minor DNA change in a S. aureus gene encoding an enzyme called RelA causes an accumulation of a small signalling molecule called (p)ppGpp, which in turn leads to persistent activation of the important bacterial stress response known as the stringent response. This is the first report of the involvement of the stringent response in S. aureus SCV formation and its association with persistent infection. Additionally, we have uncovered a novel mechanism of resistance to the new antimicrobial linezolid, caused by a mutation in a gene encoding a 23S rRNA methyltransferase. This study highlights the exquisite adaptability of this important pathogen in the face of antimicrobial treatment.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).

          Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired infections that are becoming increasingly difficult to combat because of emerging resistance to all current antibiotic classes. The evolutionary origins of MRSA are poorly understood, no rational nomenclature exists, and there is no consensus on the number of major MRSA clones or the relatedness of clones described from different countries. We resolve all of these issues and provide a more thorough and precise analysis of the evolution of MRSA clones than has previously been possible. Using multilocus sequence typing and an algorithm, BURST, we analyzed an international collection of 912 MRSA and methicillin-susceptible S. aureus (MSSA) isolates. We identified 11 major MRSA clones within five groups of related genotypes. The putative ancestral genotype of each group and the most parsimonious patterns of descent of isolates from each ancestor were inferred by using BURST, which, together with analysis of the methicillin resistance genes, established the likely evolutionary origins of each major MRSA clone, the genotype of the original MRSA clone and its MSSA progenitor, and the extent of acquisition and horizontal movement of the methicillin resistance genes. Major MRSA clones have arisen repeatedly from successful epidemic MSSA strains, and isolates with decreased susceptibility to vancomycin, the antibiotic of last resort, are arising from some of these major MRSA clones, highlighting a depressing progression of increasing drug resistance within a small number of ecologically successful S. aureus genotypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allelic replacement in Staphylococcus aureus with inducible counter-selection.

            A method for rapid selection of allelic replacement mutations in the chromosome of Staphylococcus aureus is described. Plasmid pKOR1, an Escherichia coli/S. aureus shuttle vector, permits rapid cloning via lambda recombination and ccdB selection. Plasmid transformation of staphylococci and growth at 43 degrees C, a non-permissive condition for pKOR1 replication, selects for homologous recombination and pKOR1 integration into the bacterial chromosome. Anhydrotetracycline-mediated induction of pKOR1-encoded secY antisense transcripts via the Pxyl/tetO promoter, a condition that is not compatible with staphylococcal growth, selects for chromosomal excision and loss of plasmid. Using this strategy, allelic replacements in S. aureus rocA were generated at frequencies that obviated the need for antibiotic marker selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing.

              The spread of multidrug-resistant Staphylococcus aureus (MRSA) strains in the clinical environment has begun to pose serious limits to treatment options. Yet virtually nothing is known about how resistance traits are acquired in vivo. Here, we apply the power of whole-genome sequencing to identify steps in the evolution of multidrug resistance in isogenic S. aureus isolates recovered periodically from the bloodstream of a patient undergoing chemotherapy with vancomycin and other antibiotics. After extensive therapy, the bacterium developed resistance, and treatment failed. Sequencing the first vancomycin susceptible isolate and the last vancomycin nonsusceptible isolate identified genome wide only 35 point mutations in 31 loci. These mutations appeared in a sequential order in isolates that were recovered at intermittent times during chemotherapy in parallel with increasing levels of resistance. The vancomycin nonsusceptible isolates also showed a 100-fold decrease in susceptibility to daptomycin, although this antibiotic was not used in the therapy. One of the mutated loci associated with decreasing vancomycin susceptibility (the vraR operon) was found to also carry mutations in six additional vancomycin nonsusceptible S. aureus isolates belonging to different genetic backgrounds and recovered from different geographic sites. As costs drop, whole-genome sequencing will become a useful tool in elucidating complex pathways of in vivo evolution in bacterial pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2010
                June 2010
                10 June 2010
                : 6
                : 6
                : e1000944
                Affiliations
                [1 ]Department of Microbiology, Monash University, Clayton, Victoria, Australia
                [2 ]Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia
                [3 ]Microbiology Department, Austin Health, Heidelberg, Victoria, Australia
                [4 ]Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
                [5 ]Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
                [6 ]Department of Chemistry, Seoul National University, Seoul, Korea
                Dartmouth Medical School, United States of America
                Author notes

                Conceived and designed the experiments: JKD TPS BPH. Performed the experiments: WG KC HJN TPS BPH. Analyzed the data: WG KC JKD TS PFH NEH ELH TPS BPH. Contributed reagents/materials/analysis tools: HWR JIH ELH TPS BPH. Wrote the paper: WG KC JKD HJN TS PFH NEH HWR JIH ELH TPS BPH.

                ¶ Joint senior author.

                Article
                10-PLPA-RA-2499R2
                10.1371/journal.ppat.1000944
                2883592
                20548948
                b1259a6e-ee98-4d84-8aca-7ddb13e8b47b
                Gao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2010
                : 7 May 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Functional Genomics
                Infectious Diseases/Antimicrobials and Drug Resistance
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Nosocomial and Healthcare-Associated Infections
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Medical Microbiology
                Microbiology/Microbial Evolution and Genomics

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article