63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections.

          Author Summary

          During long-term chronic infections of cystic fibrosis patients, Pseudomonas aeruginosa adapts to the lung environment, generating various different morphotypes including small colony variants (SCVs), small, strongly adherent colonies whose appearance correlates with persistence of infection. The SCV morphology is strongly associated with increased levels of the signaling molecule cyclic di-GMP. In this study we investigated the connection between cyclic di-GMP, SCV and persistence of infection. Following a genetic screen for mutants that displayed SCV morphologies, we identified and characterized the YfiBNR system. YfiN is a membrane-bound cyclic di-GMP producing enzyme, whose activity is tightly controlled by YfiR and YfiB. Cyclic di-GMP produced by YfiN boosts exopolysaccharide synthesis, generating an SCV morphotype upon YfiR-mediated release of YfiN repression. The resulting YfiN-mediated SCV morphotype is highly resistant to macrophage phagocytosis in vitro, suggesting a role for the SCV phenotype in immune system evasion. Consistent with this, YfiN de-repression increased the persistence of P. aeruginosa in long-term infections in a mouse model. The observation that the addition of antibiotics decreased the number of suppressors, and the relative fitness disadvantage of the YfiN-mediated SCV morphotype in liquid culture, suggested that SCV-mediated persistence might be favored during antimicrobial chemotherapy.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          SMART, a simple modular architecture research tool: identification of signaling domains.

          Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Comparison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1-homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology domain; (iii) putative functions of domain families after identification of additional family members, for example, a ubiquitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH domains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrin/pyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacteria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aminoglycoside antibiotics induce bacterial biofilm formation.

            Biofilms are adherent aggregates of bacterial cells that form on biotic and abiotic surfaces, including human tissues. Biofilms resist antibiotic treatment and contribute to bacterial persistence in chronic infections. Hence, the elucidation of the mechanisms by which biofilms are formed may assist in the treatment of chronic infections, such as Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Here we show that subinhibitory concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and Escherichia coli. In P. aeruginosa, a gene, which we designated aminoglycoside response regulator (arr), was essential for this induction and contributed to biofilm-specific aminoglycoside resistance. The arr gene is predicted to encode an inner-membrane phosphodiesterase whose substrate is cyclic di-guanosine monophosphate (c-di-GMP)-a bacterial second messenger that regulates cell surface adhesiveness. We found that membranes from arr mutants had diminished c-di-GMP phosphodiesterase activity, and P. aeruginosa cells with a mutation changing a predicted catalytic residue of Arr were defective in their biofilm response to tobramycin. Furthermore, tobramycin-inducible biofilm formation was inhibited by exogenous GTP, which is known to inhibit c-di-GMP phosphodiesterase activity. Our results demonstrate that biofilm formation can be a specific, defensive reaction to the presence of antibiotics, and indicate that the molecular basis of this response includes alterations in the level of c-di-GMP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia.

              Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2010
                March 2010
                12 March 2010
                : 6
                : 3
                : e1000804
                Affiliations
                [1 ]Biozentrum, University of Basel, Basel, Switzerland
                [2 ]Institute of Pharmacology, Hannover Medical School, Hannover, Germany
                [3 ]Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
                [4 ]Department of Biomedicine, University Hospital, Basel, Switzerland
                Yale University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: JGM TJ DR AS CA RL UJ. Performed the experiments: JGM TJ CS VK. Analyzed the data: JGM TJ AS CA RL UJ. Contributed reagents/materials/analysis tools: CS VK. Wrote the paper: JGM TJ UJ.

                Article
                09-PLPA-RA-1267R2
                10.1371/journal.ppat.1000804
                2837407
                20300602
                b1500a94-bf2d-4525-9e8d-c1956b7744a6
                Malone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 July 2009
                : 3 February 2010
                Page count
                Pages: 17
                Categories
                Research Article
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Respiratory Infections
                Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article