28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytoplasmic Sulfurtransferases in the Purple Sulfur Bacterium Allochromatium vinosum: Evidence for Sulfur Transfer from DsrEFH to DsrC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While the importance of sulfur transfer reactions is well established for a number of biosynthetic pathways, evidence has only started to emerge that sulfurtransferases may also be major players in sulfur-based microbial energy metabolism. Among the first organisms studied in this regard is the phototrophic purple sulfur bacterium Allochromatium vinosum. During the oxidation of reduced sulfur species to sulfate this Gammaproteobacterium accumulates sulfur globules. Low molecular weight organic persulfides have been proposed as carrier molecules transferring sulfur from the periplasmic sulfur globules into the cytoplasm where it is further oxidized via the “Dsr” ( d issimilatory s ulfite r eductase) proteins. We have suggested earlier that the heterohexameric protein DsrEFH is the direct or indirect acceptor for persulfidic sulfur imported into the cytoplasm. This proposal originated from the structural similarity of DsrEFH with the established sulfurtransferase TusBCD from E. coli. As part of a system for tRNA modification TusBCD transfers sulfur to TusE, a homolog of another crucial component of the A. vinosum Dsr system, namely DsrC. Here we show that neither DsrEFH nor DsrC have the ability to mobilize sulfane sulfur directly from low molecular weight thiols like thiosulfate or glutathione persulfide. However, we demonstrate that DsrEFH binds sulfur specifically to the conserved cysteine residue DsrE-Cys78 in vitro. Sulfur atoms bound to cysteines in DsrH and DsrF were not detected. DsrC was exclusively persulfurated at DsrC-Cys111 in the penultimate position of the protein. Most importantly, we show that persulfurated DsrEFH indeed serves as an effective sulfur donor for DsrC in vitro. The active site cysteines Cys78 of DsrE and Cys20 of DsrH furthermore proved to be essential for sulfur oxidation in vivo supporting the notion that DsrEFH and DsrC are part of a sulfur relay system that transfers sulfur from a persulfurated carrier molecule to the dissimilatory sulfite reductase DsrAB.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast.

          Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox and other nitrogen cycling processes, suggesting that it may influence biogeochemical cycling in the global ocean.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions.

            The wobble bases of bacterial tRNAs responsible for NNR codons are modified to 5-methylaminomethyl-2-thiouridine (mnm5s2U). 2-thio modification of mnm5s2U is required for accurate decoding and essential for normal cell growth. We identified five genes yhhP, yheL, yheM, yheN, and yccK (named tusA, tusB, tusC, tusD, and tusE, respectively) that are essential for 2-thiouridylation of mnm5s2U by a systematic genome-wide screen ("ribonucleome analysis"). Efficient 2-thiouridine formation in vitro was reconstituted with recombinant TusA, a TusBCD complex, TusE, and previously identified IscS and MnmA. The desulfurase activity of IscS is stimulated by TusA binding. IscS transfers the persulfide sulfur to TusA. TusE binds TusBCD complex and stimulates sulfur transfer from TusA to TusD. TusE also interacts with an MnmA-tRNA complex. This study revealed that 2-thiouridine formation proceeds through a complex sulfur-relay system composed of multiple sulfur mediators that select and facilitate specific sulfur flow to 2-thiouridine from various pathways of sulfur trafficking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.

              To identify the actual substrate of the glutathione-dependent sulfur dioxygenase (EC 1.13.11.18) elemental sulfur oxidation of the meso-acidophilic Acidithiobacillus thiooxidans strains DSM 504 and K6, Acidithiobacillus ferrooxidans strain R1 and Acidiphilium acidophilum DSM 700 was analysed. Extraordinarily high specific sulfur dioxygenase activities up to 460 nmol x min(-1) (mg protein)(-1) were found in crude extracts. All cell-free systems oxidized elemental sulfur only via glutathione persulfide (GSSH), a non-enzymic reaction product from glutathione (GSH) and elemental sulfur. Thus, GSH plays a catalytic role in elemental sulfur activation, but is not consumed during enzymic sulfane sulfur oxidation. Sulfite is the first product of sulfur dioxygenase activity; it further reacted non-enzymically to sulfate, thiosulfate or glutathione S-sulfonate (GSSO(-3)). Free sulfide was not oxidized by the sulfur dioxygenase. Persulfide as sulfur donor could not be replaced by other sulfane-sulfur-containing compounds (thiosulfate, polythionates, bisorganyl-polysulfanes or monoarylthiosulfonates). The oxidation of H(2)S by the dioxygenase required GSSG, i.e. the disulfide of GSH, which reacted non-enzymically with sulfide to give GSSH prior to enzymic oxidation. On the basis of these results and previous findings a biochemical model for elemental sulfur and sulfide oxidation in Acidithiobacillus and Acidiphilium spp. is proposed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 July 2012
                : 7
                : 7
                : e40785
                Affiliations
                [1 ]Institut für Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
                [2 ]Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Oeiras, Portugal
                [3 ]Institut für Medizinische Mikrobiologie, Immunologie and Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
                Louisiana State University and A & M College, United States of America
                Author notes

                Conceived and designed the experiments: CD IACP YS HGS. Performed the experiments: YS MJ SSV. Analyzed the data: YS SSV CD IACP MJ. Contributed reagents/materials/analysis tools: YS MJ SSV HGS. Wrote the paper: CD YS SSV.

                Article
                PONE-D-12-07347
                10.1371/journal.pone.0040785
                3397948
                22815818
                b1ab6cf0-989f-46cd-8a30-c5e0a442166b
                Stockdreher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 March 2012
                : 13 June 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Biochemistry
                Enzymes
                Enzyme Classes
                Transferases
                Metabolism
                Metabolic Pathways
                Proteins
                Protein Interactions
                Bioenergetics
                Microbiology
                Bacteriology
                Bacterial Biochemistry
                Bacterial Physiology
                Microbial Metabolism
                Microbial Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article