15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of Biohydrogen Production with Biomechatronics

      ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentation bacteria. The hydrogen production is affected by many process conditions. For obtaining the optimal result, experimental design is planned using the Taguchi Method. Four controlling factors, the ultrasonic frequency, energy, exposure time, and starch concentration, are considered to calculate the highest hydrogen production by the Taguchi Method. Under the best operating conditions, the biohydrogen production efficiency of dark fermentation increases by 19.11%. Results have shown that the combination of ultrasound and biological reactors for dark fermentation hydrogen production outperforms the traditional biohydrogen production method. The ultrasonic mechanical effects in this research always own different significances on biohydrogen production.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparison of biohydrogen production processes

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biohydrogen as a renewable energy resource—Prospects and potentials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass.

              The present study focuses on the exploitation of sweet sorghum biomass as a source for hydrogen and methane. Fermentative hydrogen production from the sugars of sweet sorghum extract was investigated at different hydraulic retention times (HRT). The subsequent methane production from the effluent of the hydrogenogenic process and the methane potential of the remaining solids after the extraction process were assessed as well. The highest hydrogen production rate (2550 ml H(2)/d) was obtained at the HRT of 6h while the highest yield of hydrogen produced per kg of sorghum biomass was achieved at the HRT of 12h (10.4l H(2)/kg sweet sorghum). It has been proved that the effluent from the hydrogenogenic reactor is an ideal substrate for methane production with approximately 29l CH(4)/kg of sweet sorghum. Anaerobic digestion of the solid residues after the extraction process yielded 78l CH(4)/kg of sweet sorghum. This work demonstrated that biohydrogen production can be very efficiently coupled with a subsequent step of methane production and that sweet sorghum could be an ideal substrate for a combined gaseous biofuels production.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2014
                2014
                : 2014
                :
                : 1-11
                Article
                10.1155/2014/721267
                b22dd0b9-74d5-4d21-a471-a2067fdf28d8
                © 2014

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article