1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors

      1 , 1 , 2 , 1 , 3
      Chemical Reviews
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references399

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Toll-Like Receptor Signaling Pathways

          Toll-like receptors (TLRs) play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. TLRs signal through the recruitment of specific adaptor molecules, leading to activation of the transcription factors NF-κB and IRFs, which dictate the outcome of innate immune responses. During the past decade, the precise mechanisms underlying TLR signaling have been clarified by various approaches involving genetic, biochemical, structural, cell biological, and bioinformatics studies. TLR signaling appears to be divergent and to play important roles in many aspects of the innate immune responses to given pathogens. In this review, we describe recent progress in our understanding of TLR signaling regulation and its contributions to host defense.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.

            Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell signaling by receptor tyrosine kinases.

              Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Chemical Reviews
                Chem. Rev.
                American Chemical Society (ACS)
                0009-2665
                1520-6890
                September 14 2022
                June 17 2022
                September 14 2022
                : 122
                : 17
                : 13952-13988
                Affiliations
                [1 ]Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, United States
                [2 ]Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, United States
                [3 ]Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, United States
                Article
                10.1021/acs.chemrev.1c01035
                b2587ed9-1bd4-4e86-bb01-548fbb5b2f7f
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article