29
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): the past, the present and the future

      review-article
      ,
      Drug Design, Development and Therapy
      Dove Medical Press
      enzyme replacement therapy, Elaprase, idursulfase

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mucopolysaccharidosis type II (MPS II; Hunter syndrome; OMIM 309900) is a rare, multisystemic, progressive lysosomal storage disease caused by deficient activity of the iduronate-2-sulfatase (I2S) enzyme. Accumulation of the glycosaminoglycans dermatan sulfate and heparan sulfate results in a broad range of disease manifestations that are highly variable in presentation and severity; notably, approximately two-thirds of individuals are affected by progressive central nervous system involvement. Historically, management of this disease was palliative; however, during the 1990s, I2S was purified to homogeneity for the first time, leading to cloning of the corresponding gene and offering a means of addressing the underlying cause of MPS II using enzyme replacement therapy (ERT). Recombinant I2S (idursulfase) was produced for ERT using a human cell line and was shown to be indistinguishable from endogenous I2S. Preclinical studies utilizing the intravenous route of administration provided valuable insights that informed the design of the subsequent clinical studies. The pivotal Phase II/III clinical trial of intravenous idursulfase (Elaprase ®; Shire, Lexington, MA, USA) demonstrated improvements in a range of clinical parameters; based on these findings, intravenous idursulfase was approved for use in patients with MPS II in the USA in 2006 and in Europe and Japan in 2007. Evidence gained from post-approval programs has helped to improve our knowledge and understanding of management of patients with the disease; as a result, idursulfase is now available to young pediatric patients, and in some countries patients have the option to receive their infusions at home. Although ERT with idursulfase has been shown to improve somatic signs and symptoms of MPS II, the drug does not cross the blood–brain barrier and so treatment of neurological aspects of the disease remains challenging. A number of novel approaches are being investigated, and these may help to improve the care of patients with MPS II in the future.

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Post-translational modifications in the context of therapeutic proteins.

          The majority of protein-based biopharmaceuticals approved or in clinical trials bear some form of post-translational modification (PTM), which can profoundly affect protein properties relevant to their therapeutic application. Whereas glycosylation represents the most common modification, additional PTMs, including carboxylation, hydroxylation, sulfation and amidation, are characteristic of some products. The relationship between structure and function is understood for many PTMs but remains incomplete for others, particularly in the case of complex PTMs, such as glycosylation. A better understanding of such structural-functional relationships will facilitate the development of second-generation products displaying a PTM profile engineered to optimize therapeutic usefulness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher's disease.

            Gaucher's disease, the most prevalent of the sphingolipid storage disorders, is caused by a deficiency of the enzyme glucocerebrosidase (glucosylceramidase). Enzyme replacement was proposed as a therapeutic strategy for this disorder in 1966. To assess the clinical effectiveness of this approach, we infused macrophage-targeted human placental glucocerebrosidase (60 IU per kilogram of body weight every 2 weeks for 9 to 12 months) into 12 patients with type 1 Gaucher's disease who had intact spleens. The frequency of infusions was increased to once a week in two patients (children) during part of the trial because they had clinically aggressive disease. The hemoglobin concentration increased in all 12 patients, and the platelet count in 7. Serum acid phosphatase activity decreased in 10 patients during the trial, and the plasma glucocerebroside level in 9. Splenic volume decreased in all patients after six months of treatment, and hepatic volume in five. Early signs of skeletal improvements were seen in three patients. The enzyme infusions were well tolerated, and no antibody to the exogenous enzyme developed. Intravenous administration of macrophage-targeted glucocerebrosidase produces objective clinical improvement in patients with type 1 Gaucher's disease. The hematologic and visceral responses to enzyme replacement develop more rapidly than the skeletal response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy

              Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is a rare X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulphatase, leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues and organs. Clinical manifestations include severe airway obstruction, skeletal deformities, cardiomyopathy and, in most patients, neurological decline. Death usually occurs in the second decade of life, although some patients with less severe disease have survived into their fifth or sixth decade. Until recently, there has been no effective therapy for MPS II, and care has been palliative. Enzyme replacement therapy (ERT) with recombinant human iduronate-2-sulphatase (idursulfase), however, has now been introduced. Weekly intravenous infusions of idursulfase have been shown to improve many of the signs and symptoms and overall wellbeing in patients with MPS II. This paper provides an overview of the clinical manifestations, diagnosis and symptomatic management of patients with MPS II and provides recommendations for the use of ERT. The issue of treating very young patients and those with CNS involvement is also discussed. ERT with idursulfase has the potential to benefit many patients with MPS II, especially if started early in the course of the disease.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                23 August 2017
                : 11
                : 2467-2480
                Affiliations
                Research & Development, Shire Human Genetic Therapies, Inc., Lexington, MA, USA
                Author notes
                Correspondence: David AH Whiteman, Research & Development, Shire Pharmaceuticals Inc., 300 Shire Way, Lexington, MA 02421, USA, Tel +1 781 482 9369, Fax +1 781 482 1820, Email dwhiteman@ 123456shire.com
                [*]

                These authors contributed equally to this work

                Article
                dddt-11-2467
                10.2147/DDDT.S139601
                5574592
                28860717
                b3412046-8f0d-4e73-a767-8e5a7f99499e
                © 2017 Whiteman and Kimura. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                enzyme replacement therapy,elaprase,idursulfase
                Pharmacology & Pharmaceutical medicine
                enzyme replacement therapy, elaprase, idursulfase

                Comments

                Comment on this article