14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of ACE2 Exacerbates Murine Renal Ischemia-Reperfusion Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia-reperfusion (I/R) is a model of acute kidney injury (AKI) that is characterized by vasoconstriction, oxidative stress, apoptosis and inflammation. Previous studies have shown that activation of the renin-angiotensin system (RAS) may contribute to these processes. Angiotensin converting enzyme 2 (ACE2) metabolizes angiotensin II (Ang II) to angiotensin-(1–7), and recent studies support a beneficial role for ACE2 in models of chronic kidney disease. However, the role of ACE2 in models of AKI has not been fully elucidated. In order to test the hypothesis that ACE2 plays a protective role in AKI we assessed I/R injury in wild-type (WT) mice and ACE2 knock-out (ACE2 KO) mice. ACE2 KO and WT mice exhibited similar histologic injury scores and measures of kidney function at 48 hours after reperfusion. Loss of ACE2 was associated with increased neutrophil, macrophage, and T cell infiltration in the kidney. mRNA levels for pro-inflammatory cytokines, interleukin-1β, interleukin-6 and tumour necrosis factor-α, as well as chemokines macrophage inflammatory protein 2 and monocyte chemoattractant protein-1, were increased in ACE2 KO mice compared to WT mice. Changes in inflammatory cell infiltrates and cytokine expression were also associated with greater apoptosis and oxidative stress in ACE2 KO mice compared to WT mice. These data demonstrate a protective effect of ACE2 in I/R AKI.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          TLR4 activation mediates kidney ischemia/reperfusion injury.

          Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4(-/-) and MyD88(-/-) mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4(-/-) and MyD88(-/-) TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4(-/-) mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4(-/-) BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ischemic acute renal failure: an inflammatory disease?

            Inflammation plays a major role in the pathophysiology of acute renal failure resulting from ischemia. In this review, we discuss the contribution of endothelial and epithelial cells and leukocytes to this inflammatory response. The roles of cytokines/chemokines in the injury and recovery phase are reviewed. The ability of the mouse kidney to be protected by prior exposure to ischemia or urinary tract obstruction is discussed as a potential model to emulate as we search for pharmacologic agents that will serve to protect the kidney against injury. Understanding the inflammatory response prevalent in ischemic kidney injury will facilitate identification of molecular targets for therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Renin-angiotensin-aldosterone system and progression of renal disease.

              Inhibition of the renin-angiotensin-aldosterone system (RAAS) is one of the most powerful maneuvers to slow progression of renal disease. Angiotensin II (AngII) has emerged in the past decade as a multifunctional cytokine that exhibits many nonhemodynamic properties, such as acting as a growth factor and profibrogenic cytokine, and even having proinflammatory properties. Many of these deleterious functions are mediated by other factors, such as TGF-beta and chemoattractants that are induced in the kidney by AngII. Moreover, understanding of the RAAS has become much more complex in recent years with the identification of novel peptides (e.g., AngIV) that could bind to specific receptors, elucidating deleterious effects, and non-angiotensin-converting enzyme (ACE)-mediated generation of AngII. The ability of renal cells to produce AngII in a concentration that is much higher than what is found in the systemic circulation and the observation that aldosterone may be engaged directly in profibrogenic processes independent of hypertension have added to the complexity of the RAAS. Even renin has now been identified to have a "life on its own" and mediates profibrotic effects via binding to specific receptors. Finally, drugs that are used to block the RAAS, such as ACE inhibitors or certain AngII type 1 receptor antagonists, may have properties on cells independent of AngII (ACE inhibitor-mediated outside-inside signaling and peroxisome proliferator-activated receptor-gamma stimulatory effects of certain sartanes). Although blockade of the RAAS with ACE inhibitors, AngII type 1 receptor antagonists, or the combination of both should be part of every strategy to slow progression of renal disease, a better understanding of the novel aspects of the RAAS should contribute to the development of innovative strategies not only to completely halt progression but also to induce regression of human renal disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 August 2013
                : 8
                : 8
                : e71433
                Affiliations
                [1 ]Departments of Medicine and Institute of Medical Science, University of Toronto, Toronto, Canada
                [2 ]Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Canada
                [3 ]Division of Cardiology, Department of Medicine, Mazanlowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
                [4 ]Department of Pathology, University Health Network and University of Toronto, Toronto, Canada
                University of Kentucky, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FF GCL HNR AK GYO JWS RJ. Performed the experiments: FF GCL XZ SY VW AH JP. Analyzed the data: FF GCL XZ AK JWS RJ. Contributed reagents/materials/analysis tools: SY HNR GYO. Wrote the paper: FF GCL HNR VW AH JP AK GYO JWS RJ.

                Article
                PONE-D-13-01422
                10.1371/journal.pone.0071433
                3739768
                23951161
                b361637a-7cd4-48f9-a137-d0492359a541
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 January 2013
                : 28 June 2013
                Page count
                Pages: 17
                Funding
                This study was supported by the Canadian Institutes for Health Research (CIHR), grant number 43971. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Enzymes
                Hormones
                Immunology
                Immune Response
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Renal System
                Renal Physiology
                Nephrology
                Acute Renal Failure

                Uncategorized
                Uncategorized

                Comments

                Comment on this article