30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mesenchymal stromal cells (MSCs) are considered to have a modest benefit on left ventricular ejection fraction (LVEF) in patients with acute myocardial infarction (AMI). However, the optimal injection timing and dose needed to induce beneficial cardiac effects are unknown. The purpose of this meta-analysis was to identify an optimal MSC transplantation time and cell dose in the setting of AMI to achieve better clinical endpoints.

          Methods

          The authors conducted a systematic review of studies published up to June 2016 by searching PubMed, EMBASE, MEDLINE, and the Cochrane Library for relevant randomized controlled trials (RCTs).

          Results

          Eight prospective RCTs with 449 participants were included. The pooled results revealed that patients in the MSC group had no significant increase in LVEF from baseline compared with that in the control group (1.47% increase, 95% confidence interval (CI) −4.5 to 7.45; I 2 = 97%; P > 0.05). A subgroup analysis was conducted to explore the results according to differences in transplantation time and dose of MSCs injected. For transplantation timing, the LVEF of patients accepting a MSC infusion within 1 week was significantly increased by 3.22% (95% CI 1.31 to 5.14; I 2 = 0; P < 0.05), but this increase was insignificant in the group that accepted an MSC infusion after 1 week (−0.35% in LVEF, 95% CI −10.22 to 9.52; I 2 = 99%; P > 0.05). Furthermore, patients accepting a MSC dose of less than 10 7 cells exhibited an LVEF improvement of 2.25% compared with the control (95% CI 0.56 to 3.93; I 2 = 9%; P < 0.05). Combining transplantation time and cell dose indicates that a significant improvement of LVEF of 3.32% was achieved in the group of patients injected with <10 7 MSCs within 1 week (95% CI 1.14 to 5.50; I 2 = 0; P = 0.003).

          Conclusions

          Transplantation time and injected cell dose are key factors that determine the therapeutic effect of stem cell therapy. The injection of no more than 10 7 MSCs within 1 week for AMI after percutaneous coronary intervention might improve left ventricular systolic function. Further studies on the mechanism and the effectiveness of MSCs for long-term therapy are warranted.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.

          Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of mesenchymal stem cells for therapy of cardiac disease.

            Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells are widely studied, and in early stage, clinical studies show promise for repair and regeneration of cardiac tissues. The ability of mesenchymal stem cells to differentiate into mesoderm- and nonmesoderm-derived tissues, their immunomodulatory effects, their availability, and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of mesenchymal stem cells, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis.

              Mesenchymal stem cells or multipotent stromal cells (MSCs) have initially captured attention in the scientific world because of their differentiation potential into osteoblasts, chondroblasts and adipocytes and possible transdifferentiation into neurons, glial cells and endothelial cells. This broad plasticity was originally hypothesized as the key mechanism of their demonstrated efficacy in numerous animal models of disease as well as in clinical settings. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly caused by the multitude of bioactive molecules secreted by these remarkable cells. Numerous angiogenic factors, growth factors and cytokines have been discovered in the MSC secretome, all have been demonstrated to alter endothelial cell behavior in vitro and induce angiogenesis in vivo. As a consequence, MSCs have been widely explored as a promising treatment strategy in disorders caused by insufficient angiogenesis such as chronic wounds, stroke and myocardial infarction. In this review, we will summarize into detail the angiogenic factors found in the MSC secretome and their therapeutic mode of action in pathologies caused by limited blood vessel formation. Also the application of MSC as a vehicle to deliver drugs and/or genes in (anti-)angiogenesis will be discussed. Furthermore, the literature describing MSC transdifferentiation into endothelial cells will be evaluated critically. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                wangziz10@126.com
                wanglldouble2009@126.com
                18817560226@163.com
                pujdoc16@163.com
                086-21-68382445 , jiangmeng0919@163.com
                086-21-68382445 , heben@medmail.com.cn
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central (London )
                1757-6512
                28 January 2017
                28 January 2017
                2017
                : 8
                : 21
                Affiliations
                ISNI 0000 0004 0368 8293, GRID grid.16821.3c, Department of Cardiology, Renji Hospital, , School of Medicine, Shanghai Jiaotong University, ; 160 Pujian Road, Shanghai, 200127 China
                Article
                450
                10.1186/s13287-016-0450-9
                5273801
                28129790
                b3975baa-26b8-4c0f-acd1-823a81cf1165
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 October 2016
                : 23 November 2016
                : 3 December 2016
                Funding
                Funded by: the Natural Science Foundation of China
                Award ID: 81270206
                Award Recipient :
                Funded by: the Natural Science Foundation of China
                Award ID: 81470391
                Award Recipient :
                Funded by: the Med-X Foundation
                Award ID: YG2014MS49
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Molecular medicine
                mesenchymal stromal cell,acute myocardial infarction,transplantation timing,cell dose

                Comments

                Comment on this article