2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pain in Multiple Sclerosis: Understanding Pathophysiology, Diagnosis, and Management Through Clinical Vignettes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropathic pain and other pain syndromes occur in the vast majority of patients with multiple sclerosis at some time during their disease course. Pain can become chronic and paroxysmal. In this review, we will utilize clinical vignettes to describe various pain syndromes associated with multiple sclerosis and their pathophysiology. These syndromes vary from central neuropathic pain or Lhermitte's phenomenon associated with central nervous system lesions to trigeminal neuralgia and optic neuritis pain associated with nerve lesions. Muscular pain can also arise due to spasticity. In addition, we will discuss strategies utilized to help patients manage these symptoms.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiple sclerosis--the plaque and its pathogenesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trigeminal neuralgia: pathology and pathogenesis.

            There is now persuasive evidence that trigeminal neuralgia is usually caused by demyelination of trigeminal sensory fibres within either the nerve root or, less commonly, the brainstem. In most cases, the trigeminal nerve root demyelination involves the proximal, CNS part of the root and results from compression by an overlying artery or vein. Other causes of trigeminal neuralgia in which demyelination is involved or implicated include multiple sclerosis and, probably, compressive space-occupying masses in the posterior fossa. Examination of trigeminal nerve roots from patients with compression of the nerve root by an overlying blood vessel has revealed focal demyelination in the region of compression, with close apposition of demyelinated axons and an absence of intervening glial processes. Similar foci of nerve root demyelination and juxtaposition of axons have been demonstrated in multiple sclerosis patients with trigeminal neuralgia. Experimental studies indicate that this anatomical arrangement favours the ectopic generation of spontaneous nerve impulses and their ephaptic conduction to adjacent fibres, and that spontaneous nerve activity is likely to be increased by the deformity associated with pulsatile vascular indentation. Decompression of the nerve root produces rapid relief of symptoms in most patients with vessel-associated trigeminal neuralgia, probably because the resulting separation of demyelinated axons and their release from focal distortion reduce the spontaneous generation of impulses and prevent their ephaptic spread. The role of remyelination in initial symptomatic recovery after decompression is unclear. However, remyelination may help to ensure that relief of symptoms is sustained after decompression of the nerve root and may also be responsible for the spontaneous remission of the neuralgia in some patients. In addition to causing symptomatic relief, vascular decompression leads to rapid recovery of nerve conduction across the indented root, a phenomenon that, we suggest, is likely to reflect the reversal of compression-induced conduction block in larger myelinated fibres outside the region of demyelination. Trigeminal neuralgia can occur in association with a range of other syndromes involving vascular compression and hyperactivity of cranial nerves. Clinical observations and electrophysiological studies support the concept that demyelination and ephaptic spread of excitation underlie most, if not all, of these conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial.

              Rituximab, a monoclonal antibody selectively depleting CD20+ B cells, has demonstrated efficacy in reducing disease activity in relapsing-remitting multiple sclerosis (MS). We evaluated rituximab in adults with primary progressive MS (PPMS) through 96 weeks and safety through 122 weeks. Using 2:1 randomization, 439 PPMS patients received two 1,000 mg intravenous rituximab or placebo infusions every 24 weeks, through 96 weeks (4 courses). The primary endpoint was time to confirmed disease progression (CDP), a prespecified increase in Expanded Disability Status Scale sustained for 12 weeks. Secondary endpoints were change from baseline to week 96 in T2 lesion volume and total brain volume on magnetic resonance imaging scans. Differences in time to CDP between rituximab and placebo did not reach significance (96-week rates: 38.5% placebo, 30.2% rituximab; p = 0.14). From baseline to week 96, rituximab patients had less (p < 0.001) increase in T2 lesion volume; brain volume change was similar (p = 0.62) to placebo. Subgroup analysis showed time to CDP was delayed in rituximab-treated patients aged <51 years (hazard ratio [HR] = 0.52; p = 0.010), those with gadolinium-enhancing lesions (HR = 0.41; p = 0.007), and those aged <51 years with gadolinium-enhancing lesions (HR = 0.33; p = 0.009) compared with placebo. Adverse events were comparable between groups; 16.1% of rituximab and 13.6% of placebo patients reported serious events. Serious infections occurred in 4.5% of rituximab and <1.0% of placebo patients. Infusion-related events, predominantly mild to moderate, were more common with rituximab during the first course, and decreased to rates comparable to placebo on successive courses. Although time to CDP between groups was not significant, overall subgroup analyses suggest selective B-cell depletion may affect disease progression in younger patients, particularly those with inflammatory lesions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurol
                Front Neurol
                Front. Neurol.
                Frontiers in Neurology
                Frontiers Media S.A.
                1664-2295
                13 January 2022
                2021
                : 12
                : 799698
                Affiliations
                [1] 1Department of Medical Affairs, Quest Diagnostics , Secaucus, NJ, United States
                [2] 2Neuroimmunology Laboratory of Lawrence Steinman, Stanford University School of Medicine , Stanford, CA, United States
                Author notes

                Edited by: Gila Moalem-Taylor, University of New South Wales, Australia

                Reviewed by: Franco Granella, University of Parma, Italy; Maree Therese Smith, The University of Queensland, Australia

                *Correspondence: Michael K. Racke Michael.K.Racke@ 123456QuestDiagnostics.com

                This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Neurology

                Article
                10.3389/fneur.2021.799698
                8794582
                35095742
                b3a086d9-7450-4cbb-aa39-8db8533026f6
                Copyright © 2022 Racke, Frohman and Frohman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 October 2021
                : 20 December 2021
                Page count
                Figures: 0, Tables: 3, Equations: 0, References: 67, Pages: 14, Words: 12265
                Categories
                Neurology
                Review

                Neurology
                multiple sclerosis,pain,pathophysiology,treatment,diagnosis
                Neurology
                multiple sclerosis, pain, pathophysiology, treatment, diagnosis

                Comments

                Comment on this article