17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Expression of endothelin-1 in the lungs of patients with pulmonary hypertension.

          Pulmonary hypertension is characterized by an increase in vascular tone or an abnormal proliferation of muscle cells in the walls of small pulmonary arteries. Endothelin-1 is a potent endothelium-derived vasoconstrictor peptide with important mitogenic properties. It has therefore been suggested that endothelin-1 may contribute to increases in pulmonary arterial tone or smooth-muscle proliferation in patients with pulmonary hypertension. We studied the sites and magnitude of endothelin-1 production in the lungs of patients with various causes of pulmonary hypertension. We studied the distribution of endothelin-1-like immunoreactivity (by immunocytochemical analysis) and endothelin-1 messenger RNA (by in situ hybridization) in lung specimens from 15 control subjects, 11 patients with plexogenic pulmonary arteriopathy (grades 4 through 6), and 17 patients with secondary pulmonary hypertension and pulmonary arteriopathy of grades 1 through 3. In the controls, endothelin-1-like immunoreactivity was rarely seen in vascular endothelial cells. In the patients with pulmonary hypertension, endothelin-1-like immunoreactivity was abundant, predominantly in endothelial cells of pulmonary arteries with medial thickening and intimal fibrosis. Likewise, endothelin-1 messenger RNA was increased in the patients with pulmonary hypertension and was expressed primarily at sites of endothelin-1-like immunoreactivity. There was a strong correlation between the intensity of endothelin-1-like immunoreactivity and pulmonary vascular resistance in the patients with plexogenic pulmonary arteriopathy, but not in those with secondary pulmonary hypertension. Pulmonary hypertension is associated with the increased expression of endothelin-1 in vascular endothelial cells, suggesting that the local production of endothelin-1 may contribute to the vascular abnormalities associated with this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension.

            Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus-infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ-GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate release promotes growth of malignant gliomas.

              Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative diseases. Although recent data show that cultured glioma cells secrete glutamate, the growth potential of brain tumors has not yet been linked to an excitotoxic mechanism. Using bioluminescence detection of glutamate release from freshly prepared brain slices, we show that implanted glioma cells continue to secrete glutamate. Moreover, gliomas with high glutamate release have a distinct growth advantage in host brain that is not present in vitro. Treatment with the NMDA receptor antagonists MK801 or memantine slowed the growth of glutamate-secreting tumors in situ, suggesting that activation of NMDA receptors facilitates tumor expansion. These findings support a new approach for therapy of brain tumors, based upon antagonizing glutamate secretion or its target receptors.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                May 29 2018
                May 29 2018
                : 137
                : 22
                : 2371-2389
                Affiliations
                [1 ]INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.).
                [2 ]University Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France (S.J.D., G.B.-M., A.C., M.Q., C.R.-M, F.A., M.K.N., B.R., E.G., M.-C.V., M.V., N.R., P.D., E.F., F.P., M.H., S.C.-K.).
                [3 ]AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H.).
                Article
                10.1161/CIRCULATIONAHA.117.029930
                29444988
                b3c652fd-7409-4888-8d18-1daaa361de7d
                © 2018
                History

                Comments

                Comment on this article