82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The importance of ubiquitination and sumoylation on the transforming activity of HTLV Tax-1 and Tax-2

      research-article
      1 , 1 ,
      Retrovirology
      BioMed Central
      HTLV-1, HTLV-2, Tax, ATL, Cell transformation, NF-κB, Sumoylation, Ubiquitination

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human T-cell Leukemia Virus type 1 (HTLV-1) and 2 (HTLV-2) are two closely related human retroviruses. HTLV-1 is associated with an aggressive Adult T-cell Leukemia (ATL) while there is no evidence for an association of HTLV-2 with any human malignancies. The two viruses encode transactivator proteins, Tax-1 and Tax-2 respectively. In ATL, Tax-1 is thought to play a central role in the transformation of a normal T-cell into a leukemic cell; however, it has not been entirely clear how post-translational modifications of Tax-1 influence its transforming activity. Here, we discuss three recent papers that report on the ubiquitination and sumoylation of Tax-1 and Tax-2. We comment on their divergent findings implicating the importance (or lack of importance) of these modifications and other events on Tax activation of NF-κB as related to cellular transformation.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct transformation tropism exhibited by human T lymphotropic virus type 1 (HTLV-1) and HTLV-2 is the result of postinfection T cell clonal expansion.

          Human T lymphotropic virus type 1 (HTLV-1) and HTLV-2 are related but pathogenically distinct viruses. HTLV-1 mainly causes adult T cell leukemia, while HTLV-2 is not associated with leukemia. In vitro, HTLV-1 and HTLV-2 predominantly transform CD4(+) and CD8(+) T cells, respectively: the genetic determinant maps to the viral envelope. Herein, we investigate whether this transformation tropism occurs during initial infection or subsequently during the cellular transformation process. Since most individuals are chronically infected at the time of detection, we utilized an established rabbit model to longitudinally measure the early HTLV-1 and HTLV-2 infection and replication kinetics in purified CD4(+) and CD8(+) T cells. HTLV-1 and HTLV-2 were detected in both CD4(+) and CD8(+) T cells within 1 week postinoculation. In HTLV-1-infected rabbit CD4(+) T cells, proviral burden and tax/rex mRNA expression peaked early, and expression levels were directly proportional to each other. The late expression of the antisense transcript (Hbz or Aph-2) correlated directly with a late proviral burden peak in HTLV-1- or HTLV-2-infected rabbit CD8(+) T cells, respectively. This study provides the first in vivo evidence that these viruses do not exhibit cellular preference during initial infection. We further evaluated the transformation tropism of HTLV-1 and HTLV-2 over a 9-week period using in vitro cell growth/immortalization assays. At the early weeks, both HTLV-1 and HTLV-2 showed proportionate growth of CD4(+) and CD8(+) T cells. However, beyond week 5, the predominance of one particular T cell type emerged, supporting the conclusion that transformation tropism is a postinfection event due to selective clonal expansion over time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aneuploidy and cancer.

            The cell's euploid status is influenced by, amongst other mechanisms, an intact spindle assembly checkpoint (SAC), an accurate centrosome cycle, and proper cytokinesis. Studies in mammalian cells suggest that dysregulated SAC function, centrosome cycle, and cytokinesis can all contribute significantly to aneuploidy. Of interest, human cancers are frequently aneuploid and show altered expression in SAC genes. The SAC is a multi-protein complex that monitors against mis-segregation of sister chromatids. Several recent experimental mouse models have suggested a link between weakened SAC and in vivo tumorigenesis. Here, we review in brief some mechanisms which contribute to cellular aneuploidy and offer a perspective on the relationship between aneuploidy and human cancers. (c) 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tax gene expression and cell cycling but not cell death are selected during HTLV-1 infection in vivo

              Background Adult T cell leukemia results from the malignant transformation of a CD4+ lymphoid clone carrying an integrated HTLV-1 provirus that has undergone several oncogenic events over a 30-60 year period of persistent clonal expansion. Both CD4+ and CD8+ lymphocytes are infected in vivo; their expansion relies on CD4+ cell cycling and on the prevention of CD8+ cell death. Cloned infected CD4+ but not CD8+ T cells from patients without malignancy also add up nuclear and mitotic defects typical of genetic instability related to theexpression of the virus-encoded oncogene tax. HTLV-1 expression is cancer-prone in vitro, but in vivo numerous selection forces act to maintain T cell homeostasis and are possibly involved in clonal selection. Results Here we demonstrate that the HTLV-1 associated CD4+ preleukemic phenotype and the specific patterns of CD4+ and CD8+ clonal expansion are in vivo selected processes. By comparing the effects of recent (1 month) experimental infections performed in vitro and those observed in cloned T cells from patients infected for >6-26 years, we found that in chronically HTLV-1 infected individuals, HTLV-1 positive clones are selected for tax expression. In vivo, infected CD4+ cells are positively selected for cell cycling whereas infected CD8+ cells and uninfected CD4+ cells are negatively selected for the same processes. In contrast, the known HTLV-1-dependent prevention of CD8+ T cell death pertains to both in vivo and in vitro infected cells. Conclusions Therefore, virus-cell interactions alone are not sufficient to initiate early leukemogenesis in vivo.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2012
                7 December 2012
                : 9
                : 103
                Affiliations
                [1 ]Molecular Virology Section, Laboratory of Molecular Microbiology, the National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, 20892-0460, USA
                Article
                1742-4690-9-103
                10.1186/1742-4690-9-103
                3528636
                23217176
                b3c80340-57b7-41d8-8360-ea6c8e318197
                Copyright ©2012 Zane and Jeang; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 November 2012
                : 29 November 2012
                Categories
                Viewpoints

                Microbiology & Virology
                htlv-1,htlv-2,tax,atl,cell transformation,nf-κb,sumoylation,ubiquitination
                Microbiology & Virology
                htlv-1, htlv-2, tax, atl, cell transformation, nf-κb, sumoylation, ubiquitination

                Comments

                Comment on this article