22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tobacco Upregulates P. gingivalis Fimbrial Proteins Which Induce TLR2 Hyposensitivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tobacco smokers are more susceptible to periodontitis than non-smokers but exhibit reduced signs of clinical inflammation. The underlying mechanisms are unknown. We have previously shown that cigarette smoke extract (CSE) represents an environmental stress to which P. gingivalis adapts by altering the expression of several virulence factors – including major and minor fimbrial antigens (FimA and Mfa1, respectively) and capsule – concomitant with a reduced pro-inflammatory potential of intact P. gingivalis.

          Methodology/Principal Findings

          We hypothesized that CSE-regulation of capsule and fimbrial genes is reflected at the ultrastructural and functional levels, alters the nature of host-pathogen interactions, and contributes to the reduced pro- inflammatory potential of smoke exposed P. gingivalis. CSE induced ultrastructural alterations were determined by electron microscopy, confirmed by Western blot and physiological consequences studied in open-flow biofilms. Inflammatory profiling of specific CSE-dysregulated proteins, rFimA and rMfa1, was determined by quantifying cytokine induction in primary human innate and OBA-9 cells. CSE up-regulates P. gingivalis FimA at the protein level, suppresses the production of capsular polysaccharides at the ultrastructural level, and creates conditions that promote biofilm formation. We further show that while FimA is recognized by TLR2/6, it has only minimal inflammatory activity in several cell types. Furthermore, FimA stimulation chronically abrogates the pro-inflammatory response to subsequent TLR2 stimulation by other TLR-2-specific agonists (Pam3CSK4, FSL, Mfa1) in an IκBα- and IRAK-1-dependent manner.

          Conclusions/Significance

          These studies provide some of the first information to explain, mechanistically, how tobacco smoke changes the P. gingivalis phenotype in a manner likely to promote P. gingivalis colonization and infection while simultaneously reducing the host response to this major mucosal pathogen.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of biofilm structures by the novel computer program COMSTAT.

          The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, Pseudomonas: putida, P. aureofaciens, P. fluorescens and P. aeruginosa, tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure - mean thickness, roughness, substratum coverage and surface to volume ratio - showed that the four Pseudomonas: strains represent different modes of biofilm growth. P. putida had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. P. aeruginosa colonized the entire substratum, and formed flat, uniform biofilms. P. aureofaciens resembled P. aeruginosa, but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of P. fluorescens had a phenotype intermediate between those of P. putida and P. aureofaciens. Analysis of biofilms of P. aureofaciens growing on 0.03 mM, 0.1 mM or 0.5 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis.

            Porphyromonas gingivalis, a gram-negative anaerobe, is a major etiological agent in the initiation and progression of severe forms of periodontal disease. An opportunistic pathogen, P. gingivalis can also exist in commensal harmony with the host, with disease episodes ensuing from a shift in the ecological balance within the complex periodontal microenvironment. Colonization of the subgingival region is facilitated by the ability to adhere to available substrates such as adsorbed salivary molecules, matrix proteins, epithelial cells, and bacteria that are already established as a biofilm on tooth and epithelial surfaces. Binding to all of these substrates may be mediated by various regions of P. gingivalis fimbrillin, the structural subunit of the major fimbriae. P. gingivalis is an asaccharolytic organism, with a requirement for hemin (as a source of iron) and peptides for growth. At least three hemagglutinins and five proteinases are produced to satisfy these requirements. The hemagglutinin and proteinase genes contain extensive regions of highly conserved sequences, with posttranslational processing of proteinase gene products contributing to the formation of multimeric surface protein-adhesin complexes. Many of the virulence properties of P. gingivalis appear to be consequent to its adaptations to obtain hemin and peptides. Thus, hemagglutinins participate in adherence interactions with host cells, while proteinases contribute to inactivation of the effector molecules of the immune response and to tissue destruction. In addition to direct assault on the periodontal tissues, P. gingivalis can modulate eucaryotic cell signal transduction pathways, directing its uptake by gingival epithelial cells. Within this privileged site, P. gingivalis can replicate and impinge upon components of the innate host defense. Although a variety of surface molecules stimulate production of cytokines and other participants in the immune response, P. gingivalis may also undertake a stealth role whereby pivotal immune mediators are selectively inactivated. In keeping with its strict metabolic requirements, regulation of gene expression in P. gingivalis can be controlled at the transcriptional level. Finally, although periodontal disease is localized to the tissues surrounding the tooth, evidence is accumulating that infection with P. gingivalis may predispose to more serious systemic conditions such as cardiovascular disease and to delivery of preterm infants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MyD88: an adapter that recruits IRAK to the IL-1 receptor complex.

              IL-1 is a proinflammatory cytokine that signals through a receptor complex of two different transmembrane chains to generate multiple cellular responses, including activation of the transcription factor NF-kappaB. Here we show that MyD88, a previously described protein of unknown function, is recruited to the IL-1 receptor complex following IL-1 stimulation. MyD88 binds to both IRAK (IL-1 receptor-associated kinase) and the heterocomplex (the signaling complex) of the two receptor chains and thereby mediates the association of IRAK with the receptor. Ectopic expression of MyD88 or its death domain-containing N-terminus activates NF-kappaB. The C-terminus of MyD88 interacts with the IL-1 receptor and blocks NF-kappaB activation induced by IL-1, but not by TNF. Thus, MyD88 plays the same role in IL-1 signaling as TRADD and Tube do in TNF and Toll pathways, respectively: it couples a serine/threonine protein kinase to the receptor complex.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                4 May 2010
                : 5
                : 5
                : e9323
                Affiliations
                [1 ]Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
                [2 ]Oral Health and Systemic Disease Research Group, Department of Oral Health and Rehabilitation, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America
                Columbia University, United States of America
                Author notes

                Conceived and designed the experiments: JB DD DAS. Performed the experiments: JB CAD DER DLP. Analyzed the data: JB DAS. Wrote the paper: JB DAS.

                Article
                09-PONE-RA-13307R1
                10.1371/journal.pone.0009323
                2864253
                20454607
                b3dc20f6-9e76-4b2c-a6ba-f1329b7ee58d
                Bagaitkar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 October 2009
                : 29 January 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Immunity to Infections
                Microbiology/Innate Immunity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article