40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cullin 4A (CUL4A), a direct target of miR-9 and miR-137, promotes gastric cancer proliferation and invasion by regulating the Hippo signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although Cullin 4A (CUL4A) is mutated or amplified in several human cancer types, its role in gastric cancer (GC) and the mechanisms underlying its regulation remain largely uncharacterized. In the present study, we report that the expression of CUL4A significantly correlated with the clinical stage of the tumor and lymph node metastasis, and survival rates were lower in GC patients with higher levels of CUL4A than in patients with lower CUL4A levels. The upregulation of CUL4A promoted GC cell proliferation and epithelial-mesenchymal transition (EMT) by downregulating LATS1-Hippo-YAP signaling. Knocking down CUL4A had the opposite effect in vitro and in vivo. Interestingly, CUL4A expression was inhibited by the microRNAs (miRNAs), miR-9 and miR-137, which directly targeted the 3′-UTR of CUL4A. Overexpression of miR-9 and miR-137 downregulated the CUL4A-LATS1-Hippo signaling pathway and suppressed GC cell proliferation and invasion in vitro. Taken together, our findings demonstrate that perturbations to miR-9/137-CUL4A-Hippo signaling contribute to gastric tumorigenesis, and suggest potential therapeutic targets for the future treatment of GC.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer.

          The Hippo pathway has been implicated in suppressing tissue overgrowth and tumor formation by restricting the oncogenic activity of YAP. However, transcriptional regulators that inhibit YAP activity have not been well studied. Here, we uncover clinical importance for VGLL4 in gastric cancer suppression and find that VGLL4 directly competes with YAP for binding TEADs. Importantly, VGLL4's tandem Tondu domains are not only essential but also sufficient for its inhibitory activity toward YAP. A peptide mimicking this function of VGLL4 potently suppressed tumor growth in vitro and in vivo. These findings suggest that disruption of YAP-TEADs interaction by a VGLL4-mimicking peptide may be a promising therapeutic strategy against YAP-driven human cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRL4s: the CUL4-RING E3 ubiquitin ligases.

            The evolutionarily conserved cullin family proteins can assemble as many as 400 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. CUL4, one of three founding cullins conserved from yeast to humans, uses a large beta-propeller protein, DDB1, as a linker to interact with a subset of WD40 proteins that serve as substrate receptors, forming as many as 90 E3 complexes in mammals. Many CRL4 complexes are involved in chromatin regulation and are frequently hijacked by different viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals.

              The Hippo pathway defined originally in Drosophila melanogaster is conserved in mammals. The fly core components Hippo, Sav, Wts, and Mats are conserved in mammals as Mst1/2, WW45, LATS1/2, and Mob1. The pathway impinges on transcriptional coactivator Yorkie in fly and YAP in mammals to coordinate cell proliferation and apoptosis. Several recent publications establish that the pathway is one major conserved mechanism governing cell contact inhibition, organ size control, and cancer development. This advance opens new vistas in exploring fundamental mechanisms in cell and developmental biology and offers potential targets to interfere with cancer development.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                1 March 2016
                28 January 2016
                : 7
                : 9
                : 10037-10050
                Affiliations
                1 Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
                Author notes
                Correspondence to: Jianping Xiong, jpxiong@ 123456medmail.com
                [*]

                The first author

                Article
                7048
                10.18632/oncotarget.7048
                4891102
                26840256
                b3fcf90a-3720-48fd-8d2f-6075b4e819fd
                Copyright: © 2016 Deng et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 September 2015
                : 7 December 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                cul4a,hippo,mir-9,mir-137,gastric cancer
                Oncology & Radiotherapy
                cul4a, hippo, mir-9, mir-137, gastric cancer

                Comments

                Comment on this article