9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      miR-5590-3p inhibited tumor growth in gastric cancer by targeting DDX5/AKT/m-TOR pathway

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent evidence suggests that microRNAs play important roles in the negative post-transcriptional regulators with altered expression levels found in gastric cancer (GC). Therefore, we employed explore the anti-cancer miRNA and the potential mechanisms by which miRNAs modulate GC progression. We have predicted GC miRNA expression data sets in TargetScan. miR-5590-3p is higher in adjacent nonmalignant tissue than in cancer tissue in 42 pairs of GC tissues. Functional assays, CCK-8 and colony formation assay, were used to determine the Anti-cancer role of miR-5590-3p in human GC progression. In addition, Ago2-based RIP and dual-luciferase reporter assay were conducted to study the miR-5590-3p as a direct target of DDX5. Next, Xenograft nude mouse models were used to determine the role of miR-5590-3p in GC tumorigenicity in vivo. Upregulation of miR-5590-3p suppressed GC cell proliferation, whereas downregulation of miR-5590-3p promoted GC proliferation in vitro. Furthermore, we identified DDX5 as a direct target of miR-5590-3p, and that the biological function of miR-5590-3p during GC progression in vitro and in vivo is through the DDX5/AKT/m-TOR pathway and downstream cyclinD1 and CDK2 expression. Finally, we confirmed the effect of miR-5590-3p directly targeting DDX5 on the development of gastric cancer through salvage experiments in vivo and in vitro.

          Related collections

          Author and article information

          Journal
          Biochemical and Biophysical Research Communications
          Biochemical and Biophysical Research Communications
          Elsevier BV
          0006291X
          September 2018
          September 2018
          : 503
          : 3
          : 1491-1497
          Article
          10.1016/j.bbrc.2018.07.068
          30029874
          b404dc73-ad6e-47f9-b84a-ce5692dfcc1e
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article