50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nature of the “toxic gain of function” that results from amyotrophic lateral sclerosis (ALS)-, Parkinson-, and Alzheimer-related mutations is a matter of debate. As a result no adequate model of any neurodegenerative disease etiology exists. We demonstrate that two synergistic properties, namely, increased protein aggregation propensity (increased likelihood that an unfolded protein will aggregate) and decreased protein stability (increased likelihood that a protein will unfold), are central to ALS etiology. Taken together these properties account for 69% of the variability in mutant Cu/Zn-superoxide-dismutase-linked familial ALS patient survival times. Aggregation is a concentration-dependent process, and spinal cord motor neurons have higher concentrations of Cu/Zn-superoxide dismutase than the surrounding cells. Protein aggregation therefore is expected to contribute to the selective vulnerability of motor neurons in familial ALS.

          Author Summary

          Amyotrophic lateral sclerosis (ALS), also known in America as Lou Gehrig's disease, is a fatal neurodegenerative disease with no effective treatment. Paralysis occurs as the result of the death of cells that connect the brain to various muscles, namely, the motor neurons of the brain and spinal cord. Ninety percent of ALS is sporadic and of unknown cause. A landmark discovery in ALS research was that mutations in the gene coding for Cu/Zn-superoxide dismutase cause at least 2% of ALS, and researchers have since discovered at least 119 such mutations. Neurologists also discovered that different mutations have remarkably different prognoses. For example, patients with the A4V mutation survive an average of 1 year after diagnosis, whereas patients with the H46R mutation survive an average of 18 years. Biochemists discovered that different mutations result in remarkably different physical properties, for example, stability of Cu/Zn-superoxide dismutase. In this article we apply an algorithm that predicts how fast a given Cu/Zn-superoxide dismutase will aggregate (stick to other proteins) and demonstrate that faster aggregation relates to faster death of ALS patients. We also demonstrate that loss of Cu/Zn-superoxide dismutase stability relates to faster ALS patient death. Our findings imply that aggregation of unfolded SOD1 is toxic for ALS patients, and in fact accounts for 69% of the variability in mutant Cu/Zn-superoxide-dismutase-linked familial ALS patient survival times.

          Abstract

          Increased protein aggregation and decreased protein stability are shown to be central to familial amyotrophic lateral sclerosis etiology.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases.

          A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

            Mutations of human Cu,Zn superoxide dismutase (SOD) are found in about 20 percent of patients with familial amyotrophic lateral sclerosis (ALS). Expression of high levels of human SOD containing a substitution of glycine to alanine at position 93--a change that has little effect on enzyme activity--caused motor neuron disease in transgenic mice. The mice became paralyzed in one or more limbs as a result of motor neuron loss from the spinal cord and died by 5 to 6 months of age. The results show that dominant, gain-of-function mutations in SOD contribute to the pathogenesis of familial ALS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation.

              Several pathogenic Alzheimer's disease (AD) mutations have been described, all of which cause increased amyloid beta-protein (Abeta) levels. Here we present studies of a pathogenic amyloid precursor protein (APP) mutation, located within the Abeta sequence at codon 693 (E693G), that causes AD in a Swedish family. Carriers of this 'Arctic' mutation showed decreased Abeta42 and Abeta40 levels in plasma. Additionally, low levels of Abeta42 were detected in conditioned media from cells transfected with APPE693G. Fibrillization studies demonstrated no difference in fibrillization rate, but Abeta with the Arctic mutation formed protofibrils at a much higher rate and in larger quantities than wild-type (wt) Abeta. The finding of increased protofibril formation and decreased Abeta plasma levels in the Arctic AD may reflect an alternative pathogenic mechanism for AD involving rapid Abeta protofibril formation leading to accelerated buildup of insoluble Abeta intra- and/or extracellularly.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2008
                29 July 2008
                : 6
                : 7
                : e170
                Affiliations
                [1 ] Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
                [2 ] Volen Center, Brandeis University, Waltham, Massachusetts, United States of America
                [3 ] Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
                [4 ] Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                University of California, San Francisco, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: agar@ 123456brandeis.edu
                Article
                08-PLBI-RA-0487R3 plbi-06-07-30
                10.1371/journal.pbio.0060170
                2486295
                18666828
                b4398494-4fec-442f-8918-97ebec709aa4
                Copyright: © 2008 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 February 2008
                : 5 June 2008
                Page count
                Pages: 19
                Categories
                Research Article
                Neurological Disorders
                Custom metadata
                Wang Q, Johnson JL, Agar NYR, Agar JN (2008) Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biol 6(7): e170. doi: 10.1371/journal.pbio.0060170

                Life sciences
                Life sciences

                Comments

                Comment on this article