4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Rebuilding community ecology from functional traits.

          There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Benefits of plant diversity to ecosystems: immediate, filter and founder effects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global patterns of plant leaf N and P in relation to temperature and latitude.

              A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Functional Ecology
                Funct Ecol
                Wiley
                0269-8463
                1365-2435
                September 25 2019
                December 2019
                October 06 2019
                December 2019
                : 33
                : 12
                : 2430-2446
                Affiliations
                [1 ]Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
                [2 ]The University Centre in Svalbard (UNIS) Longyearbyen Norway
                [3 ]Department of Ecological Sciences VU University Amsterdam Amsterdam The Netherlands
                [4 ]School of the Environment Nanyang Technological University Singapore City Singapore
                [5 ]Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
                Article
                10.1111/1365-2435.13454
                b448e791-7d98-401c-a032-8b30dc685cd0
                © 2019

                http://creativecommons.org/licenses/by-nc/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article