8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bardet-Biedl syndrome (BBS) is an inherited ciliopathy generally associated with severe obesity, but the underlying mechanism remains hypothetical and is generally proposed to be of neuroendocrine origin. In this study, we show that while the proliferating preadipocytes or mature adipocytes are nonciliated in culture, a typical primary cilium is present in differentiating preadipocytes. This transient cilium carries receptors for Wnt and Hedgehog pathways, linking this organelle to previously described regulatory pathways of adipogenesis. We also show that the BBS10 and BBS12 proteins are located within the basal body of this primary cilium and inhibition of their expression impairs ciliogenesis, activates the glycogen synthase kinase 3 pathway, and induces peroxisome proliferator-activated receptor nuclear accumulation, hence favoring adipogenesis. Moreover, adipocytes derived from BBS-patients' dermal fibroblasts in culture exhibit higher propensity for fat accumulation when compared to controls. This strongly suggests that a peripheral primary dysfunction of adipogenesis participates to the pathogenesis of obesity in BBS.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The renaissance of GSK3.

          Glycogen synthase kinase 3 (GSK3) was initially described as a key enzyme involved in glycogen metabolism, but is now known to regulate a diverse array of cell functions. The study of the substrate specificity and regulation of GSK3 activity has been important in the quest for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism.

            Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of Wnt signaling during adipogenesis.

              We have identified Wnt10b as a potent inhibitor of adipogenesis that must be suppressed for preadipocytes to differentiate in vitro. Here, we demonstrate that a specific inhibitor of glycogen synthase kinase 3, CHIR 99021, mimics Wnt signaling in preadipocytes. CHIR 99021 stabilizes free cytosolic beta-catenin and inhibits adipogenesis by blocking induction of CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. Preadipocyte differentiation is inhibited when 3T3-L1 cells are exposed to CHIR 99021 for any 24 h period during the first 3 days of adipogenesis. Consistent with this time frame of inhibition, expression of Wnt10b mRNA is suppressed upon induction of differentiation, with a 50% decline by 6 h and complete inhibition by 36 h. Of the agents used to induce differentiation, exposure of 3T3-L1 cells to methyl-isobutylxanthine or cAMP is sufficient to suppress expression of Wnt10b mRNA. Inhibition of adipogenesis by Wnt10b is likely mediated by Wnt receptors, Frizzled 1, 2, and/or 5, and co-receptors low density lipoprotein receptor-related proteins 5 and 6. These receptors, like Wnt10b, are highly expressed in preadipocytes and stromal vascular cells. Finally, we demonstrate that disruption of extracellular Wnt signaling by expression of secreted Frizzled related proteins causes spontaneous adipocyte conversion.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 10 2009
                February 10 2009
                February 10 2009
                February 03 2009
                : 106
                : 6
                : 1820-1825
                Article
                10.1073/pnas.0812518106
                2635307
                19190184
                b45bf0e9-a1d3-4c8b-8f2f-069d68db07a9
                © 2009
                History

                Comments

                Comment on this article