14
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Screening of Chloroquine, Hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities’ world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time screening was performed for some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through in silico approaches. For the purpose of the study, some essential viral proteins and enzymes were selected that are implicated in SARS-CoV-2 replication and multiplication as putative drug targets. Chloroquine, Hydroxychloroquine, and some of their chemically synthesized derivatives, taken from earlier published studies were selected as drug molecules. We have conducted molecular docking and related studies between Chloroquine and its derivatives and SARS-CoV-2 viral proteins, and the findings show that both Chloroquine and Hydroxychloroquine can bind to specific structural and non-structural proteins implicated in the pathogenesis of SARS-CoV-2 infection with different efficiencies. Our current study also shows that some of the chemically synthesized Chloroquine derivatives can also potentially inhibit various SARS-CoV-2 viral proteins by binding to them and concomitantly effectively disrupting the active site of these proteins. These findings bring into light another possible mechanism of action of Chloroquine and Hydroxychloroquine and also pave the way for further drug repurposing and remodeling.

          Communicated by Ramaswamy H. Sarma

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

          Structure of the nCoV trimeric spike The World Health Organization has declared the outbreak of a novel coronavirus (2019-nCoV) to be a public health emergency of international concern. The virus binds to host cells through its trimeric spike glycoprotein, making this protein a key target for potential therapies and diagnostics. Wrapp et al. determined a 3.5-angstrom-resolution structure of the 2019-nCoV trimeric spike protein by cryo–electron microscopy. Using biophysical assays, the authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor. They also tested three antibodies known to bind to the SARS-CoV spike protein but did not detect binding to the 2019-nCoV spike protein. These studies provide valuable information to guide the development of medical counter-measures for 2019-nCoV. Science, this issue p. 1260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2

            The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial

              Background Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the role of hydroxychloroquine on respiratory viral loads. Patients and methods French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point. Results Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported of untreated patients in the literature. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination. Conclusion Despite its small sample size our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.
                Bookmark

                Author and article information

                Journal
                J Biomol Struct Dyn
                J. Biomol. Struct. Dyn
                TBSD
                tbsd20
                Journal of Biomolecular Structure & Dynamics
                Taylor & Francis
                0739-1102
                1538-0254
                2020
                24 June 2020
                : 1-13
                Affiliations
                [a ]Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati , Tirupati, India;  
                [b ]Center for Sponsored Research and Consultancy, Indian Institute of Technology (IIT) Tirupati , Tirupati, India
                Author notes

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/07391102.2020.1782265.

                CONTACT Ambrish Saxena ambrish@ 123456iittp.ac.in Indian Institute of Technology (IIT) Tirupati , Renigunta Road, Tirupati, Andhra Pradesh 517506, India  
                Author information
                http://orcid.org/0000-0002-2052-400X
                http://orcid.org/0000-0001-8620-7683
                Article
                1782265
                10.1080/07391102.2020.1782265
                7332874
                32579059
                b52c5900-c2d4-4114-afba-46b8bdf9ec43
                © 2020 Informa UK Limited, trading as Taylor & Francis Group
                History
                : 18 May 2020
                : 09 June 2020
                Page count
                Figures: 7, Tables: 5, Pages: 13, Words: 7667
                Categories
                Research Article

                covid-19,sars-cov-2,hydroxychloroquine,molecular docking,chloroquine derivatives

                Comments

                Comment on this article