12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two major infectious forms of vaccinia virus (VACV) have been described: the intracellular mature virion (IMV), and the extracellular enveloped virion (EEV). Due to their stability in the environment, IMVs play a predominant role in host-to-host transmission, whereas EEVs play an important role in dissemination within the host. In a previous report, we demonstrated that mice vaccinated with VACV L1R (IMV immunogen) and A33R (EEV immunogen) were protected from a lethal poxvirus challenge. Vaccination with a combination of both genes conferred greater protection than either gene alone, suggesting that an immune response against both IMV and EEV is advantageous. Here, we report that in mice individually administered DNA vaccines with two different VACV immunogens, A27L (IMV immunogen) or B5R (EEV immunogen), failed to significantly protect; however, vaccination with a combination of both genes conferred a high level of protection. Mice were completely protected when vaccinated with a combination of four VACV genes (A27L + A33R + L1R + B5R). Rhesus macaques vaccinated with this four-gene-combination developed appropriate antibody responses to each protein. Antibody responses elicited by this vaccine cross-reacted with monkeypox virus orthologous proteins. These data indicate that a gene-based vaccine comprised of the VACV A27L + A33R + L1R + B5R genes may be a useful candidate to protect against other orthopoxviruses, including those that cause monkeypox and smallpox.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Human monkeypox and smallpox viruses: genomic comparison

          Monkeypox virus (MPV) causes a human disease which resembles smallpox but with a lower person-to-person transmission rate. To determine the genetic relationship between the orthopoxviruses causing these two diseases, we sequenced the 197-kb genome of MPV isolated from a patient during a large human monkeypox outbreak in Zaire in 1996. The nucleotide sequence within the central region of the MPV genome, which encodes essential enzymes and structural proteins, was 96.3% identical with that of variola (smallpox) virus (VAR). In contrast, there were considerable differences between MPV and VAR in the regions encoding virulence and host-range factors near the ends of the genome. Our data indicate that MPV is not the direct ancestor of VAR and is unlikely to naturally acquire all properties of VAR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The complete DNA sequence of vaccinia virus

            The complete DNA sequence of the genome of vaccinia virus has been determined. The genome consisted of 191,636 bp with a base composition of 66.6% A + T. We have identified 198 "major" protein-coding regions and 65 overlapping "minor" regions, for a total of 263 potential genes. Genes encoded by the virus were located by examination of DNA sequence characteristics and compared with existing vaccinia virus mapping analyses, sequence data, and transcription data. These genes were found to be compactly organized along the genome with relatively few regions of noncoding sequences. Whereas several similarities to proteins of known function were discerned, the function of the majority of proteins encoded by these open reading frames is as yet undetermined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells.

              We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.
                Bookmark

                Author and article information

                Journal
                Virology
                Virology
                Virology
                Elsevier Science (USA).
                0042-6822
                1096-0341
                11 February 2003
                1 February 2003
                11 February 2003
                : 306
                : 1
                : 181-195
                Affiliations
                [a ]Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA
                Author notes
                [* ]Corresponding author. Fax: +1-301-619-2439.
                Article
                S0042-6822(02)00038-7
                10.1016/S0042-6822(02)00038-7
                9628742
                12620810
                b556aa53-1be7-454d-b0cb-3d7206ff5fe1
                Copyright © 2003 Elsevier Science (USA). All rights reserved.

                Elsevier has created a Monkeypox Information Center (https://www.elsevier.com/connect/monkeypox-information-center) in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.

                History
                : 20 August 2002
                : 30 September 2002
                : 30 September 2002
                Categories
                Regular Article

                Microbiology & Virology
                vaccinia,monkeypox,smallpox,orthopoxvirus,vaccination,protection,mice,macaques,dna vaccine
                Microbiology & Virology
                vaccinia, monkeypox, smallpox, orthopoxvirus, vaccination, protection, mice, macaques, dna vaccine

                Comments

                Comment on this article