25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genome-wide mapping of global-to-local genetic effects on human facial shape

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Genome-wide association scans of complex multipartite traits like the human face typically use preselected phenotypic measures. Here we report a data-driven approach to phenotyping facial shape at multiple levels of organization, allowing for an open-ended description of facial variation, while preserving statistical power. In a sample of 2,329 persons of European ancestry we identified 38 loci, 15 of which replicated in an independent European sample (n=1,719). Four loci were completely novel. For the others, additional support (n=9) or pleiotropic effects (n=2) were found in the literature, but the results reported here were further refined. All 15 replicated loci revealed distinctive patterns of global-to-local genetic effects on facial shape and showed enrichment for active chromatin elements in human cranial neural crest cells, suggesting an early developmental origin of the facial variation captured. These results have implications for studies of facial genetics and other complex morphological traits. </p>

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          A unique chromatin signature uncovers early developmental enhancers in humans.

          Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-Wide Analysis of Transcription Factor Binding Sites Based on ChIP-Seq Data

            Molecular interactions between protein complexes and DNA carry out essential gene regulatory functions. Uncovering such interactions by means of chromatin-immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) has recently become the focus of intense interest. We here introduce QuEST (Quantitative Enrichment of Sequence Tags), a powerful statistical framework based on the Kernel Density Estimation approach, which utilizes ChIP-Seq data to determine positions where protein complexes come into contact with DNA. Using QuEST, we discovered several thousand binding sites for the human transcription factors SRF, GABP and NRSF at an average resolution of about 20 base-pairs. MEME-based motif analyses on the QuEST-identified sequences revealed DNA binding by cofactors of SRF, providing evidence that cofactor binding specificity can be obtained from ChIP-Seq data. By combining QuEST analyses with gene ontology (GO) annotations and expression data, we illustrate how general functions of transcription factors can be inferred.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Morphological Integration and Developmental Modularity

                Bookmark

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Nature
                1061-4036
                1546-1718
                February 19 2018
                :
                :
                Article
                10.1038/s41588-018-0057-4
                5937280
                29459680
                b5b64bda-a310-4fca-923a-aaa1999f6c0b
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article