4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Association between age at onset of multiple sclerosis and vitamin D level–related factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To compare vitamin D level-associated single-nucleotide polymorphisms (SNPs) in GC and CYP2R1, multiple sclerosis (MS) risk SNPs in CYP27B1, CYP24A1, and HLA-DRB1*1501, and adolescent exposure to environmental risk factors for hypovitaminosis D, with MS age at onset.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Modulation of the immune system by UV radiation: more than just the effects of vitamin D?

          Humans obtain most of their vitamin D through the exposure of skin to sunlight. The immunoregulatory properties of vitamin D have been demonstrated in studies showing that vitamin D deficiency is associated with poor immune function and increased disease susceptibility. The benefits of moderate ultraviolet (UV) radiation exposure and the positive latitude gradients observed for some immune-mediated diseases may therefore reflect the activities of UV-induced vitamin D. Alternatively, other mediators that are induced by UV radiation may be more important for UV-mediated immunomodulation. Here, we compare and contrast the effects of UV radiation and vitamin D on immune function in immunopathological diseases, such as psoriasis, multiple sclerosis and asthma, and during infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between parasite infection and immune responses in multiple sclerosis.

            To assess whether parasite infection is correlated with a reduced number of exacerbations and altered immune reactivity in multiple sclerosis (MS). A prospective, double-cohort study was performed to assess the clinical course and radiological findings in 12 MS patients presenting associated eosinophilia. All patients presented parasitic infections with positive stool specimens. In all parasite-infected MS patients, the eosinophilia was not present during the 2 previous years. Eosinophil counts were monitored at 3- to 6-month intervals. When counts became elevated, patients were enrolled in the study. Interleukin (IL)-4, IL-10, IL-12, transforming growth factor (TGF)-beta, and interferon-gamma production by myelin basic protein-specific peripheral blood mononuclear cells were studied using enzyme-linked immunospot (ELISPOT). FoxP3 and Smad7 expression were studied by reverse-transcriptase polymerase chain reaction. During a 4.6-year follow-up period, parasite-infected MS patients showed a significantly lower number of exacerbations, minimal variation in disability scores, as well as fewer magnetic resonance imaging changes when compared with uninfected MS patients. Furthermore, myelin basic protein-specific responses in peripheral blood showed a significant increase in IL-10 and TGF-beta and a decrease in IL-12 and interferon-gamma-secreting cells in infected MS patients compared with noninfected patients. Myelin basic protein-specific T cells cloned from infected subjects were characterized by the absence of IL-2 and IL-4 production, but high IL-10 and/or TGF-beta secretion, showing a cytokine profile similar to the T-cell subsets Tr1 and Th3. Moreover, cloning frequency of CD4+CD25+ FoxP3+ T cells was substantially increased in infected patients compared with uninfected MS subjects. Finally, Smad7 messenger RNA was not detected in T cells from infected MS patients secreting TGF-beta. Increased production of IL-10 and TGF-beta, together with induction of CD25+CD4+ FoxP3+ T cells, suggests that regulatory T cells induced during parasite infections can alter the course of MS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunomodulatory effects of Vitamin D in multiple sclerosis.

              Although Vitamin D is best known as a modulator of calcium homeostasis, it also has immune modulating potential. A protective effect of Vitamin D on multiple sclerosis is supported by the reduced risk associated with sun exposure and use of Vitamin D supplements. Moreover, high circulating levels of Vitamin D have been associated with lower risk of multiple sclerosis. In this study, we measured 1,25 (OH)(2) Vitamin D and 25 (OH) Vitamin D levels in multiple sclerosis patients separated into different clinical subgroups according to disease status. In addition, direct effects of 1,25 (OH)(2) Vitamin D on ex vivo CD4+ T cells and myelin-peptide specific T cell lines were investigated to gain more insight into putative regulatory mechanisms in the disease pathogenesis. One hundred and thirty-two Hispanic patients with clinically definite multiple sclerosis were studied, 58 with relapsing remitting multiple sclerosis during remission, 34 during relapse and 40 primary progressive multiple sclerosis cases. Sixty healthy individuals matched with respect to place of residence, race/ethnicity, age and gender served as controls. Levels of 25(OH)D(3) and 1,25(OH)(2)D(3), measured by ELISA were significantly lower in relapsing-remitting patients than in controls. In addition, levels in patients suffering relapse were lower than during remissions. In contrast, primary progressive patients showed similar values to controls. Proliferation of both freshly isolated CD4+ T cells and MBP-specific T cells was significantly inhibited by 1,25(OH)(2)D(3). Moreover, activated Vitamin D enhanced the development of IL-10 producing cells, and reduced the number of IL-6 and IL-17 secreting cells. Notably, Vitamin D receptor expression was induced by 1,25(OH)(2)D(3) in both activated and resting cells. Interestingly, T cells were able to metabolize 25(OH)D(3) into biologically active 1,25(OH)(2)D(3), since T cells express alpha1-hydroxylase constitutively. Finally, 1,25(OH)(2)D(3) also increased the expression and biological activity of indoleamine 2,3-dioxygenase, mediating significant increase in the number of CD4+CD25+ T regulatory cells. Collectively, these data suggest that 1,25(OH)(2)D(3) plays an important role in T cell homeostasis during the course of multiple sclerosis, thus making correction of its deficiency may be useful during treatment of the disease.
                Bookmark

                Author and article information

                Journal
                Neurology
                Neurology
                Ovid Technologies (Wolters Kluwer Health)
                0028-3878
                1526-632X
                December 28 2015
                January 05 2016
                : 86
                : 1
                : 88-93
                Article
                10.1212/WNL.0000000000002075
                26446064
                b5b9cf01-cfcd-4cce-8025-0a5408aab222
                © 2016
                History

                Comments

                Comment on this article